《中国科学报》记者从武汉大学获悉,近期,《先进科学》与《物理评论应用》刊登了该校土木建筑工程学院副教授高恩来课题组关于力学性能极限的研究成果。相关研究揭示了材料刚度与强度理论上限,发现迄今最强最韧物质。两篇论文题目分别为《预测最刚最强材料:接近理论极限的氮化碳原子链”》 与《探索杨氏模量与比杨氏模量边界》。
?
相关原理示意。受访者供图
杨氏模量与抗拉强度是衡量材料刚度和强度的度量。然而,杨氏模量等力学度量提出两百年来,理论上限悬而未决,引发了长期的争议与迷茫。面对这一困境,高恩来课题组首先从化学键刚度、取向度、密度的理论极限出发,建立了极致杨氏模量的微观物理模型,理论推导出极致杨氏模量和比杨氏模量的理论表达式,确定杨氏模量与比杨氏模量的理论上限分别为3074 GPa和1036 GPa·g-1·cm3。杨氏模量与声速、抗拉强度等密切相关。根据杨氏模量的理论上限,课题组进一步理论确定了声速上限(37 km/s)与抗拉强度上限(抗拉强度384GPa与比抗拉强度130 GPa·g-1·cm3)。
上述研究确定了杨氏模量等力学性能的理论极限,而现有材料的部分力学性能纪录与其理论极限相比尚存在巨大落差,这表明力学性能提升尚存在巨大创新研究空间。为此,课题组基于前期数据驱动发现的极致杨氏模量物质结构组分特征(Chem. Mater., 2021, 33: 1276),进一步开展固体力学理论设计。他们基于硼、碳、氮等轻质元素组合设计出大量物质结构,从中筛选出多种化学性质稳定、力学性能突破现有纪录的晶体结构,其中限域线性碳晶体的杨氏模量高达2973 GPa,接近于杨氏模量的理论极限(3074 GPa),线性氮化碳晶体比杨氏模量和比抗拉强度高达1032 GPa·g-1·cm3和108 GPa·g-1·cm3,大幅超越金刚石、石墨烯等已知高模量高强度材料,且接近于比杨氏模量和比抗拉强度的理论极限(1036 GPa·g-1·cm3和130 GPa·g-1·cm3)。
相关成果拓展了人类对材料刚度与强度的认知,发现的极限性能物质在国防军工等尖端领域具有重要应用前景。
相关文章链接一:https://onlinelibrary.wiley.com/doi/10.1002/advs.202204884
相关文章链接二:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.18.014044
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。