|
|
Big Data and Cognitive Computing:文献清单: 2023-2024年高引文章鉴读 |MDPI 编辑荐读 |
|
期刊名:Big Data and Cognitive Computing (BDCC)
期刊主页:https://www.mdpi.com/journal/BDCC

本期文献清单为您精选2023-2024年高引文章,欢迎浏览
英文标题:MalBERTv2: Code Aware BERT-Based Model for Malware Identification
中文标题:MalBERTv2:基于代码感知BERT模型的恶意软件识别系统
文章链接:https://www.mdpi.com/2504-2289/7/2/60
MDPI引用格式:Rahali, A.; Akhloufi, M.A. MalBERTv2: Code Aware BERT-Based Model for Malware Identification. Big Data Cogn. Comput. 2023, 7, 60. https://doi.org/10.3390/bdcc7020060
英文标题:An Overview on the Challenges and Limitations Using Cloud Computing in Healthcare Corporations
中文标题:医疗企业云计算应用面临的挑战与局限性概述
文章链接: https://www.mdpi.com/2504-2289/7/2/68
MDPI引用格式:Agapito, G.; Cannataro, M. An Overview on the Challenges and Limitations Using Cloud Computing in Healthcare Corporations. Big Data Cogn. Comput. 2023, 7, 68. https://doi.org/10.3390/bdcc7020068
英文标题:ZeroTrustBlock: Enhancing Security, Privacy, and Interoperability of Sensitive Data through ZeroTrust Permissioned Blockchain
中文标题:ZeroTrustBlock:通过零信任许可区块链提升敏感数据的安全性、隐私性及互操作性
文章链接: http://www.mdpi.com/2504-2289/7/4/165
MDPI引用格式:Thantharate, P.; Thantharate, A. ZeroTrustBlock: Enhancing Security, Privacy, and Interoperability of Sensitive Data through ZeroTrust Permissioned Blockchain. Big Data Cogn. Comput. 2023, 7, 165. https://doi.org/10.3390/bdcc7040165
英文标题:Performing Wash Trading on NFTs: Is the Game Worth the Candle?
中文标题:NFT洗售交易行为:铤而走险是否值得?
文章链接: http://www.mdpi.com/2504-2289/7/1/38
MDPI引用格式:Bonifazi, G.; Cauteruccio, F.; Corradini, E.; Marchetti, M.; Montella, D.; Scarponi, S.; Ursino, D.; Virgili, L. Performing Wash Trading on NFTs: Is the Game Worth the Candle? Big Data Cogn. Comput. 2023, 7, 38. https://doi.org/10.3390/bdcc7010038
英文标题:Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach
中文标题:增强信用卡欺诈检测:集成机器学习方法研究
文章链接: http://www.mdpi.com/2504-2289/8/1/6
MDPI引用格式:Khalid, A.R.; Owoh, N.; Uthmani, O.; Ashawa, M.; Osamor, J.; Adejoh, J. Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach. Big Data Cogn. Comput. 2024, 8, 6. https://doi.org/10.3390/bdcc8010006
英文标题:Autonomous Vehicles: Evolution of Artificial Intelligence and the Current Industry Landscape
中文标题:自动驾驶汽车:人工智能演进与行业现状剖析
文章链接: http://www.mdpi.com/2504-2289/8/4/42
MDPI引用格式:Garikapati, D.; Shetiya, S.S. Autonomous Vehicles: Evolution of Artificial Intelligence and the Current Industry Landscape. Big Data Cogn. Comput. 2024, 8, 42. https://doi.org/10.3390/bdcc8040042
英文标题:Breast Cancer Detection and Localizing the Mass Area Using Deep Learning
中文标题:基于深度学习的乳腺癌检测及肿块区域定位技术
文章链接: http://www.mdpi.com/2504-2289/8/7/80
MDPI引用格式:Rahman, M.M.; Jahangir, M.Z.B.; Rahman, A.; Akter, M.; Nasim, M.A.A.; Gupta, K.D.; George, R. Breast Cancer Detection and Localizing the Mass Area Using Deep Learning. Big Data Cogn. Comput. 2024, 8, 80. https://doi.org/10.3390/bdcc8070080
英文标题:Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis
中文标题:联邦学习与医学影像分析的机器学习方法综述
文章链接: http://www.mdpi.com/2504-2289/8/9/99
MDPI引用格式:Hernandez-Cruz, N.; Saha, P.; Sarker, M.M.K.; Noble, J.A. Review of Federated Learning and Machine Learning-Based Methods for Medical Image Analysis. Big Data Cogn. Comput. 2024, 8, 99. https://doi.org/10.3390/bdcc8090099
英文标题:LLMs and NLP Models in Cryptocurrency Sentiment Analysis: A Comparative Classification Study
中文标题:加密货币情感分析中的LLM与NLP模型:分类对比研究
文章链接: http://www.mdpi.com/2504-2289/8/6/63
MDPI引用格式:Roumeliotis, K.I.; Tselikas, N.D.; Nasiopoulos, D.K. LLMs and NLP Models in Cryptocurrency Sentiment Analysis: A Comparative Classification Study. Big Data Cogn. Comput. 2024, 8, 63. https://doi.org/10.3390/bdcc8060063
英文标题:Exploring the Landscape of Explainable Artificial Intelligence (XAI): A Systematic Review of Techniques and Applications
中文标题:可解释人工智能(XAI)技术全景探索:系统综述与方法应用
文章链接: http://www.mdpi.com/2504-2289/8/11/149
MDPI引用格式:Hamida, S.U.; Chowdhury, M.J.M.; Chakraborty, N.R.; Biswas, K.; Sami, S.K. Exploring the Landscape of Explainable Artificial Intelligence (XAI): A Systematic Review of Techniques and Applications. Big Data Cogn. Comput. 2024, 8, 149. https://doi.org/10.3390/bdcc8110149
期刊简介:Big Data and Cognitive Computing (ISSN: 2504-2289)创刊于2017年,是面向计算机科学大数据与认知计算的国际性、跨学科、开放获取的学术期刊,主要发表与大数据、云计算、认知计算、人工智能通信、数据分析、移动大数据、认知学习、机器学习等相关主题的原创研究论文。期刊旨在将大数据理论与智能云新兴技术结合起来,并探索超级计算机的新应用。目前已被 Scopus, ESCI (Web of Science), dblp, Inspec, Ei Compendex等多个数据库收录。
期刊主编:Min Chen, South China University of Technology, China
陈敏,现任华南理工大学计算机科学与工程学院教授,博导;IEEE Fellow (国际电气电子工程师学会会士) , IET Fellow (英国工程技术学会会士),谷歌学术引用超过5.2万次,H-index=101,获2018,2019 ,2020 , 2021及2022 科睿唯安全球高被引学者,23岁博士毕业于华南理工大学电子与通信工程学院,先后于韩国首尔大学、加拿大英属哥伦比亚大学任博士后;09年在首尔大学任教;12年高层次人才回国,并创立华中科大嵌入与普适计算实验室;现任华工计算机学院教授、博导。在IEEE JSAC、IEEE TNNLS、IEEE TPDS、IEEE TWC、IEEE TSC、INFOCOM、Science、Nature Communications等国际权威期刊及知名学术会议上发表论文200余篇,授权国家发明专利20余项。出版专著与教材12本,其中全美英文教材《大数据分析应用》已被哈佛、斯坦福等40所名校采用。在16个国际学术会议上受邀做报告,多篇论文获得最佳会议论文,并获IEEE通信学会Fred W. Ellersick Prize (2017),IEEE车载技术学会Jack Neubauer Memorial Award (2019), 以及IEEE ComSoc亚太地区的最佳论文奖(2022)。
订阅期刊资讯:https://www.mdpi.com/journal/bdcc/toc-alert
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。