来源:WEVJ 发布时间:2025/12/25 16:39:29
选择字号:
文献清单:“自动驾驶”方向 | WEVJ

期刊名称:WEVJ

期刊主页:https://www.mdpi.com/journal/wevj

还在为筛选文献而发愁?别急,这份“自动驾驶”方向的文献清单,也许能为你提供灵感!

1. Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection

自动驾驶车辆感知领域的新兴趋势:用于三维物体检测的多模态融合

文章链接:https://www.mdpi.com/2032-6653/15/1/20

MDPI引用格式: Alaba, S.Y.; Gurbuz, A.C.; Ball, J.E. Emerging Trends in Autonomous Vehicle Perception: Multimodal Fusion for 3D Object Detection. World Electr. Veh. J. 2024, 15, 20.

2. TF-YOLO: A Transformer–Fusion-Based YOLO Detector for Multimodal Pedestrian Detection in Autonomous Driving Scenes

TF-YOLO:一种基于Transformer融合的YOLO检测器,用于自动驾驶场景中的多模态行人检测

文章链接:https://www.mdpi.com/2032-6653/14/12/352

MDPI引用格式: Chen, Y.; Ye, J.; Wan, X. TF-YOLO: A Transformer–Fusion-Based YOLO Detector for Multimodal Pedestrian Detection in Autonomous Driving Scenes. World Electr. Veh. J. 2023, 14, 352.

3. Integrated Path Following and Lateral Stability Control of Distributed Drive Autonomous Unmanned Vehicle

分布式驱动自主无人车辆的集成路径跟踪和横向稳定性控制

文章链接:https://www.mdpi.com/2032-6653/15/3/122

MDPI引用格式: Zhao, F.; An, J.; Chen, Q.; Li, Y. Integrated Path Following and Lateral Stability Control of Distributed Drive Autonomous Unmanned Vehicle. World Electr. Veh. J. 2024, 15, 122.

4. Design of Unsignalized Roundabouts Driving Policy of Autonomous Vehicles Using Deep Reinforcement Learning

基于深度强化学习的自动驾驶车辆无信号环岛行驶策略设计

文章链接:https://www.mdpi.com/2032-6653/14/2/52

MDPI引用格式: Wang, Z.; Liu, X.; Wu, Z. Design of Unsignalized Roundabouts Driving Policy of Autonomous Vehicles Using Deep Reinforcement Learning. World Electr. Veh. J. 2023, 14, 52.

5. The Impact of Autonomous Vehicles on Safety, Economy, Society, and Environment

自动驾驶汽车对安全、经济、社会和环境的影响

文章链接:https://www.mdpi.com/2032-6653/15/12/579

MDPI引用格式: Gherardini, L.; Cabri, G. The Impact of Autonomous Vehicles on Safety, Economy, Society, and Environment. World Electr. Veh. J. 2024, 15, 579.

6. Vibration and Image Texture Data Fusion-Based Terrain Classification Using WKNN for Tracked Robots

基于振动和图像纹理数据融合的WKNN地形分类方法在履带机器人中的应用

文章链接:https://www.mdpi.com/2032-6653/14/8/214

MDPI引用格式: Wang, H.; Lu, E.; Zhao, X.; Xue, J. Vibration and Image Texture Data Fusion-Based Terrain Classification Using WKNN for Tracked Robots. World Electr. Veh. J. 2023, 14, 214.

7. Proposal of a Cost-Effective and Adaptive Customized Driver Inattention Detection Model Using Time Series Analysis and Computer Vision

基于时间序列分析和计算机视觉的低成本自适应定制化驾驶员注意力不集中检测模型的提出

文章链接:https://www.mdpi.com/2032-6653/15/9/400

MDPI引用格式: Sim, S.; Kim, C. Proposal of a Cost-Effective and Adaptive Customized Driver Inattention Detection Model Using Time Series Analysis and Computer Vision. World Electr. Veh. J. 2024, 15, 400.

8. The Safety Risks of AI-Driven Solutions in Autonomous Road Vehicles

人工智能驱动解决方案在自动驾驶车辆中的安全风险

文章链接:https://www.mdpi.com/2032-6653/15/10/438

MDPI引用格式: Mirzarazi, F.; Danishvar, S.; Mousavi, A. The Safety Risks of AI-Driven Solutions in Autonomous Road Vehicles. World Electr. Veh. J. 2024, 15, 438.

9. Comparative Analysis of Following Distances in Different Adaptive Cruise Control Systems at Steady Speeds

不同自适应巡航控制系统在匀速行驶时跟车距离的比较分析

文章链接:https://www.mdpi.com/2032-6653/15/3/116

MDPI引用格式: Mohammed, D.; Horváth, B. Comparative Analysis of Following Distances in Different Adaptive Cruise Control Systems at Steady Speeds. World Electr. Veh. J. 2024, 15, 116.

10. Data and Energy Impacts of Intelligent Transportation—A Review

智能交通的数据和能源影响——综述

文章链接:https://www.mdpi.com/2032-6653/15/6/262

MDPI引用格式: Rajashekara, K.; Koppera, S. Data and Energy Impacts of Intelligent Transportation—A Review. World Electr. Veh. J. 2024, 15, 262.

 
 
 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
近海自主高科技绿色钻探勘查装备亮相海南 全球变暖可能引发下一次冰河时代
《自然》展望2026值得关注的科学大事 世界首条正穿冰川一级公路隧道取得进展
>>更多
 
一周新闻排行
 
编辑部推荐博文