近日,中国科学院大连化学物理研究所研究员吴凯丰与郑州大学陈宗威博士等合作,揭示了一种分子自旋三线态产生的新机制。研究人员利用金属纳米颗粒与有机分子构建无机-有机杂化材料,通过金属-分子界面超快电荷分离,结合金属纳米颗粒中超快的电子自旋翻转,高效率地产生了分子自旋三线态,该工作对分子三线态光化学的发展及应用具有重要意义。相关成果发表在《美国化学会志》并被选为补充封面。
分子自旋三线态示意图。大连化物所供图
分子自旋三线态的高效产生是光化学和光物理领域的一个重要研究课题。由于分子无法在自旋为零的基态与自旋为一的三重激发态之间进行直接的光学跃迁,因此,分子三线态通常也被称为光学“暗态”。针对分子三线态的高效产生和应用这一难题,吴凯丰团队此前系统揭示了量子点-分子界面电荷转移介导三线态传能的各类新机制、阐明了无机量子点中的超快自旋驰豫在其中起到的关键角色等。
工作中,研究团队采用金属银纳米颗粒取代传统的贵金属有机配合物和半导体量子点,探索金属纳米颗粒诱导分子三线态的可能性。研究发现,超快瞬态吸收光谱显示由于银纳米颗粒超快的热电子活化过程,因此,从金属纳米颗粒到分子的电荷/能量转移效率都非常低;反之,光激发分子可以发生分子到金属纳米颗粒有效的空穴转移,并最终通过自旋翻转和电荷复合生成分子的三线态。团队还揭示了Marcus反转区间在控制电荷转移通路中起到的关键角色。
该工作通过对杂化材料体系的精准设计和超快瞬态吸收光谱的深入解析,揭示了金属纳米颗粒诱导生成分子三线态的新原理,展示了这类杂化材料在光动力治疗和光催化等领域的重要应用潜力。
相关论文信息:https://pubs.acs.org/doi/10.1021/jacs.4c05364
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。