作者:张梦然 来源:科技日报 发布时间:2023/10/17 9:32:43
选择字号:
纳米电子设备不靠云可实时处理数据,识别心律失常准确率达95%

 

科技日报讯 (记者张梦然)美国西北大学工程师开发了一种新型纳米电子设备,可以迄今最节能的方式执行准确的机器学习分类任务。该设备的能源使用效率比当前技术提高100倍,可实时处理大量数据并执行人工智能(AI)任务,而无需将数据传输到云端进行分析。研究成果10月12日发表在《自然·电子学》杂志上。

该设备体积小、功耗超低且接收分析没有延迟,非常适合直接集成到可穿戴电子产品(如智能手表和健身追踪器)中,以进行实时数据处理和近乎即时的诊断。

为了测试该设备,研究人员用其对公开的心电图(ECG)数据集中的信息进行分类。结果表明,该设备不仅能够有效、正确地识别不规则心跳,还能从6种不同类别中确定心律失常亚型,准确率接近95%。

在机器学习工具可以分析新数据之前,这些工具必须首先准确可靠地将训练数据分类为不同的类别。对于当前的硅基技术来说,要对心电图等大型数据集的数据进行分类,需要100多个晶体管,每个晶体管都需要自己的能源设备来运行。但该纳米电子设备只需两台能源设备即可执行相同的机器学习分类,大幅降低了功耗。

团队先训练该设备来解释心电图数据,这项任务通常需要训练有素的医护人员花费大量时间。而该纳米电子设备能够从10000个心电图样本中准确识别每种心律失常类型。通过绕过将数据发送到云端的需要,该设备不仅为患者节省出关键时间,还保护了患者隐私。

未来这些纳米电子设备可整合到日常可穿戴设备中,根据每个用户的健康状况进行个性化定制,以实现实时应用。

(原标题:纳米电子设备不靠云可实时处理数据 能效提高100倍 识别心律失常准确率达95%)

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
遗传分析追踪潘多森林的进化 团队研制出高性能的蓝光量子点液体激光
宇航员可搭乘小行星前往金星或火星 泡菜等发酵食品真的对肠道有益吗?
>>更多
 
一周新闻排行
 
编辑部推荐博文