近日,中国科学院土壤科学研究所朱春梧团队揭示了二氧化碳驱动的升温加剧了稻田磷生物有效性的降低。相关论文于2026年2月3日发表在《自然—地球科学》杂志上。
大气CO2浓度升高会通过促进土壤有机磷累积和作物收获移除,降低稻田土壤磷的有效性。目前大气CO2与温度正同步上升,但二者对土壤磷循环的交互影响尚未明确。
研究组通过在典型水旱轮作系统开展的十年期开放式CO2浓度升高试验(结合原位增温+2°C),发现CO2升高与增温均会加剧磷限制,且单独增温及其与CO2升高的复合效应比单独CO2升高影响更强。所有气候变化处理均显著降低了土壤有效磷含量(降幅32%~54%),提高了土壤碳磷比(增幅4%~30%)。进一步分析表明,增温虽初期加速了磷矿化,但通过增强铁-有机碳络合物形成与微生物固持作用,反而降低了磷有效性。
这些过程与CO2浓度升高促使作物生长加速带来的磷需求增加共同作用,加剧了土壤磷耗竭。研究首次明确铁-有机碳相互作用是此前被忽视的关键机制,它能显著降低磷的生物有效性。该发现构建了一个连接地上-地下碳磷耦合过程与微生物驱动的铁-有机质动态的机制框架,强调未来气候变化背景下亟需制定适应性养分管理策略以维持水稻生产。
附:英文原文
Title: Reduced phosphorus bioavailability in rice paddies intensified by elevated CO2-driven warming
Author: Wang, Yu, Chen, Hao, Su, Weihua, Zhao, Hongmeng, Turner, Benjamin L., Cai, Chuang, Luo, Yiqi, Peuelas, Josep, van Groenigen, Kees Jan, Wang, Dongming, Huang, Yuanyuan, Jiang, Mingkai, Wang, Lei, Wang, Shenqiang, Zhu, Yong-Guan, Shen, Renfang, Zhang, Jiabao, Zhu, Chunwu
Issue&Volume: 2026-02-03
Abstract: Rising atmospheric CO2 reduces soil phosphorus (P) availability in paddy soils by promoting soil organic P accumulation and crop harvest removal. Atmospheric CO2 and temperatures are increasing simultaneously, yet their interaction with the soil P cycle remains unresolved. Here we report a decade-long free-air CO2 enrichment experiment integrated with in situ warming (+2°C) in a typical paddy–upland rotation system. We find that both elevated CO2 and warming exacerbate P constraints, and that warming alone and in combination with elevated CO2 has a greater impact than elevated CO2 alone. All climate change treatments significantly depleted soil available P (32–54%) and increased the soil C:P ratios (4–30%). Moreover, warming initially accelerated P mineralization but reduced P availability by enhancing Fe–organic carbon complexes and microbial immobilization. These processes, together with increased crop P demand driven by accelerated growth under elevated CO2, exacerbate P depletion. We identify Fe–organic carbon interactions as a previously overlooked mechanism that significantly reduces P bioavailability. Our findings offer a mechanistic framework linking aboveground–belowground C–P coupling with microbially driven Fe–organic matter dynamics, highlighting the urgent need for adaptive nutrient management strategies to sustain rice production under future climate change.
DOI: 10.1038/s41561-026-01917-2
Source: https://www.nature.com/articles/s41561-026-01917-2
