近日,法国奥尔良大学Fabrice Gaillard团队研究了地壳系统中岩浆挥发相的金属输运。相关论文发表在2026年2月2日出版的《地质学》杂志上。
岩浆挥发相是多组分流体,其作为传输介质将金属从深部岩浆源区迁移至矿床形成部位。然而,金属在熔体与流体间的交换过程尚不明确,因为现有的经验模拟主要关注单一化学元素的迁移归宿。
研究组采用综合热化学模型模拟了硅酸盐熔体的分离结晶过程,该过程中释放出多组分挥发相。研究表明,来自非富集岩浆体系的挥发相中主微量元素含量,与矿化和非矿化体系中流体包裹体内的挥发相成分并无显著差异。因此研究组认为,成矿作用是地壳系统中重复性侵入-分异-脱气循环的结果,该过程在无预富集源的体系中普遍存在,而非必须依赖特定或复杂的化学系统。相反,成矿作用的驱动力是受含H2O与Cl熔体持续供给的长期活动系统。因此,流体中金属特征的变化反映了熔体上升过程的压力-温度轨迹及其主量元素组成的改变。
附:英文原文
Title: Metal transport by magmatic volatile phases in crustal systems
Author: Austin M. Gion, Fabrice Gaillard
Issue&Volume: 2026-02-02
Abstract: Magmatic volatile phases (MVPs) are multicomponent fluids that are a transport medium for metals being transferred from deep magmatic sources to sites of ore formation. However, the melt-to-fluid exchange of metals remains elusive because existing empirical simulations primarily address metal transport through the fate of one chemical element. We use a comprehensive thermochemical model to simulate the fractional crystallization of a silicate melt that degasses a multicomponent MVP. We show that the major and trace element abundances in MVPs formed from non-enriched magmatic systems are indistinguishable from MVPs found as fluid inclusions in mineralized and non-mineralized systems. We therefore conclude that ore formation is the consequence of repetitive intrusion-fractionation-degassing cycles common to crustal systems without pre-enriched sources, as opposed to scenarios wherein a particular or complex chemical system is required. Instead, the driving force of ore formation is a long-lived system fueled by an H2O- and Cl-bearing melt. Variations in metal signatures of fluids therefore reflect the pressure-temperature path of melt ascent and the changes in major element composition of the melt.
DOI: 10.1130/G54065.1
Geology:《地质学》,创刊于1973年。隶属于美国地质学会,最新IF:6.324
官方网址:https://pubs.geoscienceworld.org/geology
投稿链接:https://geology.msubmit.net/cgi-bin/main.plex
