当前位置:科学网首页 > 小柯机器人 >详情
CoMoO+气相阳离子介导的室温甲烷氧化制甲醛研究
作者:小柯机器人 发布时间:2026/2/4 16:46:10


近日,北京理工大学马嘉璧团队报道了CoMoO+气相阳离子介导的室温甲烷氧化制甲醛研究。2026年2月2日,《美国化学会志》发表了这一成果。

甲醛(HCHO)是一种基础的化工原料,具有广泛的工业应用前景。在温和条件下将甲烷直接氧化为甲醛(CH4 + 1/2O2 → H2 + HCHO)是一项极具吸引力但极具挑战性的转化过程,因为它既需要活化甲烷中惰性的C–H键,又需抑制其过度氧化生成二氧化碳等副产物。

该研究中,质谱实验结合理论计算表明,CoMoO+阳离子能在室温下高效介导这一转化。CoMoO+独特的电子结构促进了其与CH4反应过程中关键中间体CoMoOCH2+的形成,并避免了甲醇的生成。在后续的氧化反应中,CoMoO+中的Mo原子成为O2吸附的活性位点,Mo与Co原子共同作为电子供体活化O2,进而形成甲醛中的C–O键。

这项研究首次报道了在室温下利用异核非贵金属阳离子实现CH4被O2转化为甲醛及其自由基衍生物的气相实例。值得注意的是,CoMoOCH2+阳离子在吸附一个或两个CH4分子后仍能保持高反应活性。这些发现为甲烷的选择性活化与转化提供了新的机理认识。

附:英文原文

Title: Room-Temperature Methane Oxidation to Formaldehyde Mediated by CoMoO+ Gas-Phase Cations

Author: Lei-Ting Zhang, Chu-Man Sun, Li-Li Xing, Donald G. Truhlar, Feng-Xiang Zhang, Lian-Rui Hu, Jia-Bi Ma

Issue&Volume: February 2, 2026

Abstract: Formaldehyde (HCHO) is a fundamental chemical feedstock with widespread industrial applications. The direct oxidation of methane by oxygen to formaldehyde (CH4 + 1/2O2 → H2 + HCHO) under mild conditions represents an attractive but challenging transformation, as it requires both activation of the inert C–H bonds of CH4 and suppression of overoxidation to products such as carbon dioxide. In this work, mass spectrometry experiments combined with theoretical calculations reveal that CoMoO+ cations can efficiently mediate this transformation at room temperature. The unique electronic structure of CoMoO+ facilitates the formation of a crucial CoMoOCH2+ intermediate during the reaction with CH4 and prevents methanol formation. In the subsequent oxidation reaction, the Mo atom in CoMoO+ serves as the active site for O2 adsorption, and both Mo and Co atoms act as electron donors to activate O2, leading to the formation of the C–O bond in formaldehyde. This work reports the first gas-phase example of achieving conversion of CH4 to HCHO and its radical derivatives by O2 at room temperature using heteronuclear non-noble metal cations. Remarkably, the CoMoOCH2+ cation maintains high reactivity after adsorbing one or two CH4 molecules. These findings provide new mechanistic insights into selective methane activation and conversion.

DOI: 10.1021/jacs.5c21337

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c21337

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000