近日,华中科技大学牛广达团队报道了高灵敏度和稳定的钙钛矿探测器,通过动态修复调节超高能量辐射。2026年2月9日,《自然—光子学》杂志发表了这一成果。
超高能辐射(如能量超过1兆电子伏的X射线、电子与质子)广泛存在于放射治疗、天文学、高能物理及核电站等诸多领域。然而,由于此类辐射与物质的相互作用截面极低,其探测仍面临巨大挑战;即便发生相互作用,辐射诱发的原子位移也会导致材料严重损伤,从而影响现有探测器的灵敏度与稳定性。
研究组提出一种适用于有机-无机杂化钙钛矿材料的晶格锚定增强动态修复设计原则,可同步提升材料对超高能辐射的探测灵敏度与耐辐照稳定性。基于该策略,FA0.9Cs0.1PbBr3单晶探测器实现了高达165.6 μC mGy-1 cm-3的灵敏度,并在超高注量6兆电子伏X射线(6.4×1011 光子 cm-2)与1.2兆电子伏电子束(6×1016 电子 cm-2)辐照下保持优异稳定性。
组装后的微型可植入探测器能够实现精准的实时剂量监测,显著提升癌症治疗的安全性及有效性。此项工作推动了面向多种高能应用场景的高端半导体材料发展,其应用领域涵盖医疗治疗、航空航天电子、可穿戴电子设备、空间光伏及核技术等。
附:英文原文
Title: Highly sensitive and stable perovskite detector for ultrahigh-energy radiations via dynamic repair regulation
Author: Yin, Hang, Wu, Haodi, Zhang, Yang, Liu, Fei, Bai, Qi, Yan, Shuwen, Jin, Tong, Pang, Jincong, Gao, Yuting, Ling, Qinghao, Xue, Kan-Hao, Zhu, Chongqin, Li, Luying, Zhou, Ziling, Li, Zhen, Zheng, Zhiping, Xu, Ling, Chu, Qian, Tang, Jiang, Niu, Guangda
Issue&Volume: 2026-02-09
Abstract: Ultrahigh-energy radiations, including X-rays, electrons and protons exceeding 1MeV, are prevalent in various field, including radiation therapy, astronomy, high-energy physics and nuclear power plants. However, their detection remains challenging owing to low interaction cross-sections, and even when interactions occur, radiation-induced atomic displacements lead to severe material damage, compromising both the sensitivity and stability of current detectors. Here we report a design principle of lattice-anchoring-enhanced dynamic repair in organic–inorganic hybrid perovskites for simultaneous boosting the sensitivity and stability. Leveraging this approach, the FA0.9Cs0.1PbBr3 single-crystal detector achieves high sensitivity of 165.6μCmGy1cm3 and high radiation stability against high-fluence 6-MeV X-rays (6.4×1011 photonscm2) and 1.2-MeV electrons (6×1016 electronscm2). The assembled miniature, implantable detector enables precise, real-time dose monitoring, significantly improving the safety and efficacy of cancer treatments. This work advances the development of high-end semiconductors for diverse high-energy applications, from medical therapy to aerospace electronics, wearable electronics, space photovoltaics and nuclear technology.
DOI: 10.1038/s41566-026-01849-8
Source: https://www.nature.com/articles/s41566-026-01849-8
