当前位置:科学网首页 > 小柯机器人 >详情
平行单原子界面的空腔阵列显微镜
作者:小柯机器人 发布时间:2026/1/31 9:07:32

近日,美国斯坦福大学Simon, Jonathan研究了平行单原子界面的空腔阵列显微镜。2026年1月28日,《自然》杂志发表了这一成果。

中性原子阵列与光学腔量子电动力学系统作为现代实验量子科学的两大核心支柱,长期以来并行发展。尽管这两个平台各自展现出卓越能力——如原子阵列的高保真量子逻辑操作与光学腔的强光-物质耦合——但二者的结合有望实现快速非破坏性原子测量、构建大规模量子网络,并实现原子-光子混合哈密顿量的工程调控。然而迄今为止,整合这两个平台的实验方案,仍局限于将整个原子阵列与单一全局腔模进行空间耦合,这种构型制约了寻址能力、并行性和可扩展性。

研究组提出"腔阵列显微镜"实验平台,在二维阵列中实现每个独立原子与其专属光学腔的强耦合,系统包含超过40个独立腔模。该方案无需纳米光子元件,而是采用自由空间光学腔构型,通过在腔内植入透镜组,实现了微米尺度光斑与间距条件下高于1的峰值合作性。该设计既兼容典型原子阵列的空间尺度,又使原子远离介质表面。

研究组实现了均匀的原子-腔耦合,并在毫秒时间尺度上展示了快速、非破坏性并行读取能力,其中通过光纤阵列的读取实验为量子网络应用提供了原理验证。展望未来,研究组已实现该平台的下一代迭代版本,系统包含超过500个光学腔,精细度提升近十倍。这项研究开启了多腔量子电动力学的新领域,为基于原子阵列的大规模量子网络研究开辟了全新前沿。

附:英文原文

Title: A cavity-array microscope for parallel single-atom interfacing

Author: Shaw, Adam L., Soper, Anna, Shadmany, Danial, Kumar, Aishwarya, Palm, Lukas, Koh, Da-Yeon, Kaxiras, Vassilios, Taneja, Lavanya, Jaffe, Matt, Schuster, David I., Simon, Jonathan

Issue&Volume: 2026-01-28

Abstract: Neutral-atom arrays and optical cavity quantum electrodynamics systems have developed in parallel as central pillars of modern experimental quantum science1,2,3. Although each platform has shown exceptional capabilities—such as high-fidelity quantum logic4,5,6,7 in atom arrays and strong light–matter coupling in cavities8,9,10—their combination holds promise for realizing fast and non-destructive atom measurement11, building large-scale quantum networks12,13,14,15,16,17 and engineering hybrid atom–photon Hamiltonians18,19,20. However, so far, experiments integrating the two platforms have been limited to spatially interfacing the entire atom array with one global cavity mode21,22,23,24,25,26, a configuration that constrains addressability, parallelism and scalability. Here we introduce the cavity-array microscope, an experimental platform where each individual atom is strongly coupled to its own individual cavity across a two-dimensional array of over 40 modes. Our approach requires no nanophotonic elements26,27, and instead uses a free-space cavity geometry with intra-cavity lenses28,29 to realize above-unity peak cooperativity with micrometre-scale mode waists and spacings, compatible with typical atom-array length scales while keeping atoms far from dielectric surfaces. We achieve homogeneous atom–cavity coupling and show fast, non-destructive, parallel readout on millisecond timescales, including through a fibre array as a proof of principle for networking applications30. As an outlook, we realize a next-generation iteration of the platform with over 500 cavities and a nearly 10-fold improvement in finesse. Our work unlocks the regime of many-cavity quantum electrodynamics and opens an unexplored frontier of large-scale quantum networking with atom arrays.

DOI: 10.1038/s41586-025-10035-9

Source: https://www.nature.com/articles/s41586-025-10035-9

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html