当前位置:科学网首页 > 小柯机器人 >详情
通过二次谐波共振的低功率集成光放大
作者:小柯机器人 发布时间:2026/1/30 21:21:22

近日,美国斯坦福大学Amir H. Safavi-Naeini团队报道了通过二次谐波共振的低功率集成光放大。2026年1月28日出版的《自然》杂志发表了这一最新研究成果。

光学放大器是现代光子学的基础,能够实现长距离通信、精密传感和量子信息处理。掺铒光纤放大器主导着电信领域,但其工作波长范围受限;而半导体放大器虽覆盖更广的波长,却存在高噪声和非线性失真问题。光学参量放大器(OPAs)有望在任意波长实现宽带、量子极限水平的放大,但其小型化与应用一直受限于瓦特级别的功率需求。

研究组展示了一种基于薄膜铌酸锂的集成光学参量放大器,仅需低于200毫瓦的输入功率即可实现超过17分贝的增益,相比先前演示提升了一个数量级。我们采用二次谐波谐振设计,通过光场循环机制在保持带宽的同时,将泵浦光产生效率提升至95%,并显著提高了泵浦功率利用率。该谐振结构使有效泵浦功率较传统单通结构提升近一个数量级,同时实现了信号与泵浦光的复用。研究组在110纳米带宽内实现了平坦且接近量子极限的低噪声性能。这种低功耗架构为新一代量子及经典光子学系统提供了实用的片上光学参量放大器解决方案。

附:英文原文

Title: Low-power integrated optical amplification through second-harmonic resonance

Author: Dean, Devin J., Park, Taewon, Stokowski, Hubert S., Qi, Luke, Robison, Sam, Hwang, Alexander Y., Herrmann, Jason F., Fejer, Martin M., Safavi-Naeini, Amir H.

Issue&Volume: 2026-01-28

Abstract: Optical amplifiers are fundamental to modern photonics, enabling long-distance communications1, precision sensing2,3 and quantum information processing4,5. Erbium-doped amplifiers dominate telecommunications but are restricted to specific wavelength bands1,6, whereas semiconductor amplifiers offer broader coverage but suffer from high noise and nonlinear distortions7. Optical parametric amplifiers (OPAs) promise broadband, quantum-limited amplification across arbitrary wavelengths8. However, their miniaturization and deployment have been hampered by watt-level power requirements. Here we demonstrate an integrated OPA on thin-film lithium niobate that achieves >17dB gain with <200mW input power—an order of magnitude improvement over previous demonstrations. Our second-harmonic-resonant design enhances both pump generation efficiency (95% conversion) and pump power utilization through recirculation, without sacrificing bandwidth. The resonant architecture increases the effective pump power by nearly an order of magnitude compared with conventional single-pass designs, while also multiplexing the signal and pump. We demonstrate flat near-quantum-limited noise performance over 110nm. Our low-power architecture enables practical on-chip OPAs for next-generation quantum and classical photonics.

DOI: 10.1038/s41586-025-09959-z

Source: https://www.nature.com/articles/s41586-025-09959-z

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html