近日,美国加州大学洛杉矶分校Miao, Jianwei团队实现了精确测定非晶材料的三维原子结构。2026年1月28日,《自然》杂志发表了这一成果。
非晶态材料——即缺乏长程有序排列的固体——是薄膜电子器件、太阳能电池、相变存储器、磁性元件、医疗设备和量子技术等众多技术的基石。然而,原子排列的非周期性从根本上限制了其三维结构在原子分辨率上的测定。尽管在表征短程与中程有序方面已取得重要理论、实验与计算进展,但非晶材料完整三维原子构型的定量测定在实验上仍极具挑战性。原子电子断层扫描技术如今为直接实现这类材料的三维原子图谱绘制提供了途径。
研究组提出对该技术的定量分析,阐明如何通过稳健的图像预处理、去噪、投影对齐与归一化、先进的断层重建、原子追踪、元素分类及原子位置精修等一系列步骤,实现非晶材料中三维原子坐标与元素种类的可靠测定。基于不同噪声水平下非晶硅、硅锗锡及钴钯铂纳米颗粒的多层切片模拟数据集,该工作流程在位置精度与分类准确度上均优于其他方法。
针对钴钯铂体系,在实际剂量条件下研究组成功识别出95.1%的钴原子、99.0%的钯原子及100%的铂原子,其对应的三维位置精度分别达到29皮米、12皮米和6皮米。这些成果为精确实现非晶材料的原子电子断层扫描确立了实用准则与定量基准,其底层框架可广泛适用于其他断层成像模式,以实现高保真度的三维重构。
附:英文原文
Title: Accurate determination of the 3D atomic structure of amorphous materials
Author: Liao, Yuxuan, Sha, Haozhi, OLeary, Colum M., Zhong, Hanfeng, Yang, Yao, Miao, Jianwei
Issue&Volume: 2026-01-28
Abstract: Amorphous materials—solids lacking long-range order—underpin technologies from thin-film electronics1, solar cells2 and phase-change memory3 to magnetic components4, medical devices5 and quantum technologies6,7,8. Yet the absence of periodicity fundamentally limits determination of their three-dimensional (3D) structure at atomic resolution. Despite major theoretical, experimental, and computational advances in characterizing short- and medium-range order9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24, quantitative determination of complete 3D atomic arrangements in amorphous materials remains experimentally demanding. Atomic electron tomography (AET) now provides a pathway to direct 3D atomic mapping in these materials25,26,27. Here we present a quantitative analysis of AET, showing how robust image preprocessing, denoising, projection alignment and normalization, advanced tomographic reconstruction, atom tracing, elemental classification and atomic position refinement collectively enable reliable determination of 3D atomic coordinates and elemental identities in amorphous materials. Using multislice-simulated datasets of amorphous Si, SiGeSn and CoPdPt nanoparticles under varying noise levels, our workflow outperforms an alternative approach28 in both positional precision and classification accuracy. For CoPdPt, we identify 95.1% of Co, 99.0% of Pd and 100% of Pt atoms, with corresponding 3D positional precisions of 29pm, 12pm and 6pm, respectively, under realistic dose conditions. These results establish practical guidelines and quantitative benchmarks for achieving accurate AET of non-crystalline materials, and the underlying framework can be broadly applied to other tomographic imaging modalities for high-fidelity 3D reconstruction.
DOI: 10.1038/s41586-025-09857-4
Source: https://www.nature.com/articles/s41586-025-09857-4
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html
