当前位置:科学网首页 > 小柯机器人 >详情
氧辅助金属有机化学气相沉积实现MoS2生长的动力学加速
作者:小柯机器人 发布时间:2026/1/30 15:49:22

近日,南京大学王欣然团队报道了氧辅助金属有机化学气相沉积实现MoS2生长的动力学加速。该项研究成果发表在2026年1月29日出版的《科学》杂志上。

动力学决定了薄膜的生长特性,尤其是对于原子薄的过渡金属二硫化物而言。金属有机(MO)化学气相沉积(CVD)技术在可扩展生长方面颇具前景,但其反应受到动力学限制,从而引发纳米级畴尺寸以及碳污染问题。

研究组揭示了基本的动力学限制因素,并通过引入氧辅助的MOCVD(oxy-MOCVD)技术来克服这些限制。通过利用氧气对反应进行调节,MO前体能够转化为高纯度的过渡金属氧化物和硫族元素,从而生成尺寸和生长速率都比传统MOCVD大几个数量级的有序钼二硫化物(MoS2)畴。二硫化钼不含碳杂质,其平均迁移率超过100平方厘米/伏·秒。oxy-MOCVD技术的可扩展性通过150毫米单晶二硫化钼晶片得到了验证,这证明工业规模生产是可行的。

附:英文原文

Title: Kinetic acceleration of MoS2 growth by oxy-metal-organic chemical vapor deposition

Author: Lei Liu, Yushu Wang, Ruikang Dong, Dongxu Fan, Si Meng, Lang Wu, Shengqiang Wu, Wei Xu, Mingwei Feng, Ningmu Zou, Qingyu Yan, Zehua Hu, Fei Lu, Shitong Zhu, Yuan Gao, Liang Ma, Yi Shi, Taotao Li, Jinlan Wang, Xinran Wang

Issue&Volume: 2026-01-29

Abstract: Kinetics determine the growth behavior of thin films, particularly for atomically thin transition-metal dichalcogenides. Metal-organic (MO) chemical vapor deposition (CVD) offers promise for scalable growth, but the reactions are kinetically limited, leading to nanometer-scale domain size and carbon contaminations. Here, we unveil the fundamental kinetic limitations and overcome them by introducing oxygen-assisted MOCVD (oxy-MOCVD) technology. By tuning reactions with oxygen, MO precursors are converted into high-purity transition-metal oxides and chalcogens, producing aligned molybdenum disulfide (MoS2) domains with a size and growth rate that are orders of magnitude larger than conventional MOCVD. The MoS2 is free of carbon impurities and exhibits average mobility exceeding 100 square centimeters per volt per second. The scalability of oxy-MOCVD is demonstrated by 150-millimeter single-crystal MoS2 wafers, proving the feasibility of industrial-scale production.

DOI: aec7259

Source: https://www.science.org/doi/10.1126/science.aec7259

期刊信息

Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:63.714
官方网址:https://www.sciencemag.org/
投稿链接:https://cts.sciencemag.org/scc/#/login