近日,德累斯顿工业大学Jan Brugués及其小组的研究开发出了通过解决细胞骨架不稳定性的强健细胞质分配。2026年1月28日,国际知名学术期刊《自然》发表了这一成果。
尽管胚胎发育是稳定的,但研究小组发现由微管细胞骨架驱动的细胞质分配存在内在的不稳定性。通过结合细胞质提取物和体内实验,小组发现胚胎通过两种不同的机制来规避这种不稳定性:要么通过将细胞周期持续时间与不稳定性展开所需的时间相匹配,要么通过限制微管成核。这些调节机制产生了两种可能的策略来填充细胞质,该研究团队分别在斑马鱼和果蝇胚胎中实验证明了这一点。在斑马鱼胚胎中,不稳定的微管波从第一次分裂开始就充满了整个胚胎的几何结构。相反,在果蝇胚胎中,由于微管成核减少,稳定的微管细胞在多次分裂中逐渐填满细胞质。他们的研究结果表明,微管动力学的时间控制可能推动了有效细胞质组织的物种特异性机制的进化出现。
此外,他们的研究揭示了物理不稳定性和生物钟之间的基本协同作用,揭示了生物系统中快速、自动和有效的空间排序的通用策略。
据了解,脊椎动物和昆虫的早期发育主要依赖于受精卵细胞质的重组,从而形成个体细胞。这个复杂的过程是由穿越胚胎的大微管结构精心安排的,它们将细胞质划分为物理上独特而稳定的隔间。
附:英文原文
Title: Robust cytoplasmic partitioning by solving a cytoskeletal instability
Author: Rinaldin, Melissa, Kickuth, Alison, Lamson, Adam, Dalton, Benjamin, Xu, Yitong, Mejstk, Pavel, Di Talia, Stefano, Brugus, Jan
Issue&Volume: 2026-01-28
Abstract: Early development across vertebrates and insects critically relies on robustly reorganizing the cytoplasm of fertilized eggs into individualized cells1,2. This intricate process is orchestrated by large microtubule structures that traverse the embryo, partitioning the cytoplasm into physically distinct and stable compartments3,4. Here, despite the robustness of embryonic development, we uncover an intrinsic instability in cytoplasmic partitioning driven by the microtubule cytoskeleton. By combining experiments in cytoplasmic extract and in vivo, we reveal that embryos circumvent this instability through two distinct mechanisms: either by matching the cell-cycle duration to the time needed for the instability to unfold or by limiting microtubule nucleation. These regulatory mechanisms give rise to two possible strategies to fill the cytoplasm, which we experimentally demonstrate in zebrafish and Drosophila embryos, respectively. In zebrafish embryos, unstable microtubule waves fill the geometry of the entire embryo from the first division. Conversely, in Drosophila embryos, stable microtubule asters resulting from reduced microtubule nucleation gradually fill the cytoplasm throughout multiple divisions. Our results indicate that the temporal control of microtubule dynamics could have driven the evolutionary emergence of species-specific mechanisms for effective cytoplasmic organization. Furthermore, our study unveils a fundamental synergy between physical instabilities and biological clocks, uncovering universal strategies for rapid, robust and efficient spatial ordering in biological systems.
DOI: 10.1038/s41586-025-10023-z
Source: https://www.nature.com/articles/s41586-025-10023-z
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html
