当前位置:科学网首页 > 小柯机器人 >详情
阴离子框架柔性工程实现卤化物电解质中的超高离子电导率
作者:小柯机器人 发布时间:2026/1/13 11:36:21


近日,中国科学院物理研究所胡勇胜团队报道了阴离子框架柔性工程实现卤化物电解质中的超高离子电导率。相关论文发表在2026年1月12日出版的《美国化学会志》上。

氯化物基固体电解质因其良好的氧化稳定性和机械变形性而有望用于全固态电池。然而,大多数氯化物仅表现出适度的离子电导率,主要是由于其紧密堆积的阴离子骨架所限制的离子传输。

在这项工作中,研究组通过降低氯阴离子上的负电荷来增强阴离子骨架的灵活性,从而解决了这一局限性,这是通过掺入高价、高电负性的阳离子来实现的,同时降低了锂含量。计算表明,这种策略大大降低了阴离子重取向的能量障碍,从而形成了一个更灵活的阴离子框架,其特征是振动加剧,甚至旋转被激活。这些阴离子动力学暂时拓宽了Li+离子传输瓶颈,扭曲了局部配位环境,从而使能量景观平坦化,实现了快速离子扩散。

该策略的有效性得到了实验验证,定制的氯化物电解质在室温下实现了高达10.3 mS cm-1的离子电导率。采用Li1.25Zr0.25Ta0.75Cl6作为阴极电解液的固态电池具有出色的倍率容量和循环性能,在4℃下循环20000次后仍保持82.5%的容量。这些发现为密堆积氯化物中的离子传输机制提供了新的见解,并为设计超离子导体提供了指导。

附:英文原文

Title: Ultrahigh Ionic Conductivity in Halide Electrolytes Enabled by Anion Framework Flexibility Engineering

Author: Rui Li, Shenhao Wen, Kaiqi Xu, Chao Wang, Zheyu Lin, Xiaohan Tang, Zhizhen Zhang, Yong-Sheng Hu

Issue&Volume: January 12, 2026

Abstract: Chloride-based solid electrolytes are promising for all-solid-state batteries owing to their favorable oxidative stability and mechanical deformability. However, most chlorides exhibit only moderate ionic conductivity, primarily due to the restricted ion transport imposed by their close-packed anion frameworks. In this work, we address this limitation by enhancing anion framework flexibility through lowering the negative charge on chloride anions, achieved by incorporating high-valent, highly electronegative cations, accompanied by a reduction in the lithium content. Computations reveal that this strategy substantially decreases the energy barriers for anion reorientation, leading to a more flexible anion framework characterized by intensified libration and even activated rotation. These anion dynamics transiently widen Li+-ion transport bottlenecks and distort local coordination environments, thereby flattening the energy landscape and enabling fast ion diffusion. The effectiveness of this strategy was experimentally validated, with the tailored chloride electrolytes achieving ionic conductivities as high as 10.3 mS cm–1 at room temperature. Solid-state batteries utilizing Li1.25Zr0.25Ta0.75Cl6 as the catholyte deliver outstanding rate capacity and cycling performance, retaining 82.5% capacity after 20,000 cycles at 4C. These findings offer new insights into the ion transport mechanism in close-packed chlorides and provide guidelines for designing superionic conductors.

DOI: 10.1021/jacs.5c15937

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c15937

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000