近日,英国Google DeepMind公司Pushmeet Kohli团队实现了利用深环整形改进引力波天文台的宇宙学范围。相关论文于2025年9月4日发表在《科学》杂志上。
提高引力波天文台的低频灵敏度,将开启中等质量黑洞并合和双黑洞偏心的研究,并为双中子星并合的多信使观测提供预警。如今的反射镜稳定控制注入有害的噪音,构成了灵敏度提高的主要障碍。
研究组通过“深环整形”(一种以频域奖励为主题的强化学习方法)消除了这种噪音。研究组在LIGO利文斯顿天文台(LLO)上证明了他们的方法。该控制器将10- 30赫兹频段的控制噪声降低了30倍以上,子频段的控制噪声降低了100倍,超过了由量子限制驱动的设计目标。这些结果突出了深环整形的潜力,以改善当前和未来的引力波天文台,以及更广泛的仪器和控制系统。
附:英文原文
Title: Improving cosmological reach of a gravitational wave observatory using Deep Loop Shaping
Author: Jonas Buchli, Brendan Tracey, Tomislav Andric, Christopher Wipf, Yu Him Justin Chiu, Matthias Lochbrunner, Craig Donner, Rana X. Adhikari, Jan Harms, Iain Barr, Roland Hafner, Andrea Huber, Abbas Abdolmaleki, Charlie Beattie, Joseph Betzwieser, Serkan Cabi, Jonas Degrave, Yuzhu Dong, Leslie Fritz, Anchal Gupta, Oliver Groth, Sandy Huang, Tamara Norman, Hannah Openshaw, Jameson Rollins, Greg Thornton, George van den Driessche, Markus Wulfmeier, Pushmeet Kohli, Martin Riedmiller, The LIGO Instrument Team, R. Abbott, I. Abouelfettouh, R. X. Adhikari, A. Ananyeva, S. Appert, S. K. Apple, K. Arai, N. Aritomi, S. M. Aston, M. Ball, S. W. Ballmer, D. Barker, L. Barsotti, B. K. Berger, J. Betzwieser, D. Bhattacharjee, G. Billingsley, S. Biscans, C. D. Blair, N. Bode, E. Bonilla, V. Bossilkov, A. Branch, A. F. Brooks, D. D. Brown, J. Bryant, C. Cahillane, H. Cao, E. Capote, F. Clara, J. Collins, C. M. Compton, R. Cottingham, D. C. Coyne, R. Crouch, J. Csizmazia, A. Cumming, L. P. Dartez, D. Davis, N. Demos, E. Dohmen, J. C. Driggers, S. E. Dwyer, A. Effer, A. Ejlli, T. Etzel, M. Evans, J. Feicht, R. Frey, W. Frischhertz, P. Fritschel, V. V. Frolov, M. Fuentes-Garcia, P. Fulda, M. Fyffe, D. Ganapathy, B. Gateley, T. Gayer, J. A. Giaime, K. D. Giardina, J. Glanzer, E. Goetz, R. Goetz, A. W. Goodwin-Jones, S. Gras, C. Gray, D. Griffith, H. Grote, T. Guidry, J. Gurs, E. D. Hall, J. Hanks, J. Hanson, M. C. Heintze, A. F. Helmling-Cornell, N. A. Holland, D. Hoyland, H. Y. Huang, Y. Inoue, A. L. James, A. Jennings, W. Jia, D. H. Jones, H. B. Kabagoz, S. Karat, S. Karki, M. Kasprzack, K. Kawabe, N. Kijbunchoo, P. J. King, J. S. Kissel, K. Komori, A. Kontos, Rahul Kumar, K. Kuns, M. Landry, B. Lantz, M. Laxen, K. Lee, M. Lesovsky, F. Llamas Villarreal, M. Lormand, H. A. Loughlin, R. Macas, M. MacInnis, C. N. Makarem, B. Mannix, G. L. Mansell, R. M. Martin, K. Mason, F. Matichard, N. Mavalvala, N. Maxwell, G. McCarrol, R. McCarthy, D. E. Mc-Clelland, S. McCormick, T. McRae, F. Mera
Issue&Volume: 2025-09-04
Abstract: Improved low-frequency sensitivity of gravitational wave observatories would unlock study of intermediate-mass black hole mergers and binary black hole eccentricity and provide early warnings for multimessenger observations of binary neutron star mergers. Today’s mirror stabilization control injects harmful noise, constituting a major obstacle to sensitivity improvements. We eliminated this noise through Deep Loop Shaping, a reinforcement learning method using frequency domain rewards. We proved our methodology on the LIGO Livingston Observatory (LLO). Our controller reduced control noise in the 10- to 30-hertz band by over 30x and up to 100x in subbands, surpassing the design goal motivated by the quantum limit. These results highlight the potential of Deep Loop Shaping to improve current and future gravitational wave observatories and, more broadly, instrumentation and control systems.
DOI: adw1291
Source: https://www.science.org/doi/10.1126/science.adw1291