近日,德国卡尔斯鲁厄理工学院Christian Koos团队实现了采用主动相位稳定谱拼接的光学任意波形产生(OAWG)。该项研究成果发表在2025年9月29日出版的《光:科学与应用》杂志上。
传统的产生光波形的方法依赖于连续波(CW)激光音调的同相正交(IQ)调制。在这种情况下,产生的光波形的带宽受到底层电子元件的限制,特别是受到为IQ调制器产生驱动信号的数模转换器(DACs)的限制。这种带宽瓶颈可以通过一种称为光任意波形生成(OAWG)的概念来克服,其中多个IQ调制器和DAC并行工作,首先合成单个频谱片,然后将其组合形成单个超宽带任意光波形。然而,由于难以保持光谱片之间正确的光相位关系,从多个光谱片中有针对性地合成任意光波形一直受到阻碍。
研究组提出并演示了具有有源相位稳定的频谱切片OAWG,它允许有针对性地合成真正任意的光波形。通过合成四个独立生成的光学支路,产生了带宽高达325GHz的创纪录光学波形,从而验证了该方案的可行性。在概念验证实验中,采用光学任意波形生成系统生成了符号速率达320GBd的32正交幅度调制数据信号,通过87公里单模光纤传输后,由双通道非切片式光学任意波形测量系统接收,并获得了卓越的信号质量。研究组相信,该方案将能释放光学任意波形生成技术的全部潜力,并为高速光通信、光电子数模转换以及科研与工业中的先进测试测量等领域带来革新。
附:英文原文
Title: Optical arbitrary waveform generation (OAWG) using actively phase-stabilized spectral stitching
Author: Drayss, Daniel, Fang, Dengyang, Sherifaj, Alban, Peng, Huanfa, Fllner, Christoph, Henauer, Thomas, Lihachev, Grigory, Schmitz, Lennart, Harter, Tobias, Freude, Wolfgang, Randel, Sebastian, Kippenberg, Tobias J., Zwick, Thomas, Koos, Christian
Issue&Volume: 2025-09-29
Abstract: The conventional way of generating optical waveforms relies on in-phase and quadrature (IQ) modulation of a continuous-wave (CW) laser tone. In this case, the bandwidth of the resulting optical waveform is limited by the underlying electronic components, in particular by the digital-to-analog converters (DACs) generating the drive signals for the IQ modulator. This bandwidth bottleneck can be overcome by using a concept known as optical arbitrary waveform generation (OAWG), where multiple IQ modulators and DACs are operated in parallel to first synthesize individual spectral slices, which are subsequently combined to form a single ultra-broadband arbitrary optical waveform. However, targeted synthesis of arbitrary optical waveforms from multiple spectral slices has so far been hampered by difficulties to maintain the correct optical phase relationship between the slices. In this paper, we propose and demonstrate spectrally sliced OAWG with active phase stabilization, which permits targeted synthesis of truly arbitrary optical waveforms. We demonstrate the viability of the scheme by synthesizing optical waveforms with record-high bandwidths of up to 325GHz from four individually generated optical tributaries. In a proof-of-concept experiment, we use the OAWG system to generate 32QAM data signals at symbol rates of up to 320GBd, which we transmit over 87km of single-mode fiber and receive by a two-channel non-sliced optical arbitrary waveform measurement (OAWM) system, achieving excellent signal quality. We believe that our scheme can unlock the full potential of OAWG and disrupt a wide range of applications in high-speed optical communications, photonic-electronic digital-to-analog conversion, as well as advanced test and measurement in science and industry.
DOI: 10.1038/s41377-025-01937-4
Source: https://www.nature.com/articles/s41377-025-01937-4
Light: Science & Applications:《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4
官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex