近日,美国芝加哥大学Cleland, Andrew N.小组研究了声子相位门与数字分辨声子检测。相关论文于2025年9月18日发表在《自然—物理学》杂志上。
以流动光子为主题的量子计算方法很有吸引力,因为它们对物理的要求相对较少。然而,目前光子量子计算机的许多元件是不确定的,这对大规模设备提出了挑战。一种替代方案是在固态器件中使用流动声子,而不是光子,并与超导传输器件相结合。
研究组提出了在确定性操作和测量共声声子量子态的能力方面的进展。首先,他们展示了一声子和双声子量子比特状态的确定性相位控制,用声学马赫-曾德干涉仪测量了这一状态。研究组实现声子相位控制主题的频率依赖散射声子态从超导传输量子比特。此外,研究组提出并实现了一种多声子检测方案,该方案能够在流动的单声子和双声子Fock态和transson qutrit态之间进行相干转换,例如,将纠缠的双声子输出态转换为两个transson的纠缠态。量子声学与超导电路的集成在其实现中有望进一步发展,包括直接应用于量子计算的确定性声子量子门。
附:英文原文
Title: Acoustic phonon phase gates with number-resolving phonon detection
Author: Qiao, Hong, Wang, Zhaoyou, Andersson, Gustav, Anferov, Alexander, Conner, Christopher R., Joshi, Yash J., Li, Shiheng, Miller, Jacob M., Wu, Xuntao, Yan, Haoxiong, Jiang, Liang, Cleland, Andrew N.
Issue&Volume: 2025-09-18
Abstract: Approaches to quantum computing that use itinerant photons are appealing because they have relatively few physical requirements. However, at present, many elements of photonic quantum computers are nondeterministic, presenting a challenge for large-scale devices. One alternative is to use similar schemes with itinerant phonons in solid-state devices, rather than photons, combined with superconducting transmon devices. Here we present an advancement in the ability to deterministically manipulate and measure acoustic phonon quantum states. First, we demonstrate the deterministic phase control of itinerant one- and two-phonon qubit states, which we measure using an acoustic Mach–Zehnder interferometer. We implement phonon phase control using the frequency-dependent scattering of phonon states from a superconducting transmon qubit. Additionally, we propose and implement a multiphonon detection scheme that enables coherent conversion between itinerant one- and two-phonon Fock states and transmon qutrit states, for example, transforming an entangled two-phonon output state into the entangled state of two transmons. The integration of quantum acoustics with superconducting circuits in our implementation promises further advances, including deterministic phonon quantum gates with direct applications to quantum computing.
DOI: 10.1038/s41567-025-03027-z
Source: https://www.nature.com/articles/s41567-025-03027-z