固体中氢的吸附和脱附是电池和储氢装置中涉及的关键反应。然而,传统的使用高容量材料的热力学和电化学储氢技术存在脱氢温度高和电解质不稳定的问题。
研究组探索了氢离子(H-)驱动的电化学储氢,开发了一种具有优异H-导电性和电化学稳定性的固体电解质:反α- AgI型Ba0.5Ca0.35Na0.15H1.85。这种电解质与几种金属氢电极兼容,如氢化钛和氢化镁(MgH2),可在低温下实现高容量可逆储氢。具体而言,Mg - H2电池作为储氢装置(Mg + H2 = MgH2)在90℃下实现了每克2030毫安时的可逆容量,实现了安全高效的氢-电转换和储氢装置。
附:英文原文
Title: High-capacity, reversible hydrogen storage using H–-conducting solid electrolytes
Author: Takashi Hirose, Naoki Matsui, Takashi Itoh, Yoyo Hinuma, Kazutaka Ikeda, Kazuma Gotoh, Guangzhong Jiang, Kota Suzuki, Masaaki Hirayama, Ryoji Kanno
Issue&Volume: 2025-09-18
Abstract: Hydrogen absorption and desorption in solids are pivotal reactions involved in batteries and hydrogen storage devices. However, conventional thermodynamic and electrochemical hydrogen storage using high-capacity materials suffers from high hydrogen-desorption temperatures and instability of electrolytes. In this work, we explored electrochemical hydride ion (H–)–driven hydrogen storage and developed a solid electrolyte, anti–α-AgI–type Ba0.5Ca0.35Na0.15H1.85, which exhibits excellent H– conductivity and electrochemical stability. This electrolyte is compatible with several metal-hydrogen electrodes, such as titanim hydride and magnesium hydride (MgH2), allowing for high-capacity, reversible hydrogen storage at low temperatures. Specifically, Mg–H2 cells operating as hydrogen storage devices (Mg + H2 MgH2) achieved a reversible capacity of 2030 milliampere hours per gram at 90°C, offering safe and efficient hydrogen-electricity conversion and hydrogen storage devices.
DOI: adw1996
Source: https://www.science.org/doi/10.1126/science.adw1996
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:63.714
官方网址:https://www.sciencemag.org/
投稿链接:https://cts.sciencemag.org/scc/#/login