近日,美国科罗拉多大学博尔德分校Cui, Longji团队报道了片上单晶等离子体光电子技术,用于高效热载流子收集和光电压检测。这一研究成果发表在2025年9月16日出版的《光:科学与应用》杂志上。
纳米级厚度的大面积化学合成单晶金属由于其优越的等离子体特性而成为片上纳米光子应用的有前途的材料。虽然最近的注意力集中在它们的光学特性上,但结合最佳的电学和光学特性,其具有高性能光电功能的巨大潜力,在很大程度上仍未被探索。
研究组提出了一种基于合成金薄片纳米线的单晶等离子体光电平台,并展示了其高度增强的热载流子收集、电致发光和光电压检测的能力。值得注意的是,与多晶器件相比,单晶金纳米隙器件表现出更高的开路光电压,在片上器件密度和每面积响应率方面,代表了最高的光电压传感性能之一。该分析表明,这种增强主要归因于单晶器件中电子-声子散射的抑制和热载流子隧道效率的提高。这些结果突出了大规模单晶纳米结构在纳米尺度热载流子输运的基础研究和可扩展的电驱动纳米光子应用方面的潜力。
附:英文原文
Title: On-chip single-crystal plasmonic optoelectronics for efficient hot carrier collection and photovoltage detection
Author: Zhu, Yunxuan, Yelishala, Sai C., Liao, Shusen, Shropshire, Jackson, Natelson, Douglas, Cui, Longji
Issue&Volume: 2025-09-16
Abstract: Large-area chemically synthesized single-crystal metals with nanometer-scale thickness have emerged as promising materials for on-chip nanophotonic applications, owing to their superior plasmonic properties compared to nanofabricated polycrystalline counterparts. While much recent attention has focused on their optical properties, the combined optimal electrical and optical characteristics, which hold great potential for high-performance optoelectronic functionalities, remain largely unexplored. Here, we present a single-crystal plasmonic optoelectronic platform based on nanowires fabricated from synthesized gold flakes and demonstrate its capabilities for highly enhanced hot carrier collection, electroluminescence, and photovoltage detection. Notably, single-crystal gold nanogap devices exhibit an order of magnitude higher open-circuit photovoltage compared to polycrystalline devices, representing one of the highest reported photovoltage sensing performances in terms of on-chip device density and responsivity per area. Our analysis revealed that this enhancement is attributed mostly to the suppression of electron-phonon scattering and improved hot carrier tunneling efficiency in single-crystal devices. These results highlight the potential of large-scale single-crystal nanostructures for both fundamental studies of nanoscale hot carrier transport and scalable electrically driven nanophotonic applications.
DOI: 10.1038/s41377-025-02030-6
Source: https://www.nature.com/articles/s41377-025-02030-6
Light: Science & Applications:《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4
官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex