近日,加拿大西蒙弗雷泽大学Daniel B. Higginbottom团队研究了硅中电触发自旋光子器件。相关论文于2025年9月11日发表在《自然—光子学》杂志上。
量子网络和计算技术需要具有高速控制大型量子设备系统的可扩展硬件。固态平台已经成为有潜力的候选者,为各种量子位提供可扩展的制造。基于自旋光子接口的架构允许在光子链路上高度连接的量子网络,使量子网络和分布式量子计算协议的纠缠分布成为可能。由于具有解决这些需求的潜力,硅中的光学活性自旋缺陷是构建量子技术的一个提议平台。
研究组电激发集成光电器件中的硅T中心,该器件结合了纳米光子波导和p-i-n二极管腔。在g(2)(0)=0.05(2)的腔耦合T中心观察到单光子电致发光。此外,研究组以92(8)%的后选择保真度对电触发发射进行初始化,以预示电子自旋状态。这显示了从硅色中心电注入的单光子发射和电激发的预示自旋初始化的新方法。这些发现为硅提供了一种新的电信波段光强度,并为T中心量子处理器提供了一种高度并行的控制方法,将T中心作为可扩展量子技术的通用缺陷推进。
附:英文原文
Title: Electrically triggered spin–photon devices in silicon
Author: Dobinson, Michael, Bowness, Camille, Meynell, Simon A., Chartrand, Camille, Hoffmann, Elianor, Gascoine, Melanie, MacGilp, Iain, Afzal, Francis, Dangel, Christian, Jahed, Navid, Thewalt, Michael L. W., Simmons, Stephanie, Higginbottom, Daniel B.
Issue&Volume: 2025-09-11
Abstract: Quantum networking and computing technologies demand scalable hardware with high-speed control for large systems of quantum devices. Solid-state platforms have emerged as promising candidates, offering scalable fabrication for a wide range of qubits. Architectures based on spin–photon interfaces allow for highly connected quantum networks over photonic links, enabling entanglement distribution for quantum networking and distributed quantum computing protocols. With the potential to address these demands, optically active spin defects in silicon are one proposed platform for building quantum technologies. Here we electrically excite the silicon T centre in integrated optoelectronic devices that combine nanophotonic waveguides and cavities with p–i–n diodes. We observe single-photon electroluminescence from a cavity-coupled T centre with g(2)(0)=0.05(2). Further, we use the electrically triggered emission to herald the electron spin state, initializing it with 92(8)% post-selected fidelity. This shows electrically injected single-photon emission from a silicon colour centre and a new method of heralded spin initialization with electrical excitation. These findings present a new telecommunications-band light source for silicon and a highly parallel control method for T centre quantum processors, advancing the T centre as a versatile defect for scalable quantum technologies.
DOI: 10.1038/s41566-025-01752-8
Source: https://www.nature.com/articles/s41566-025-01752-8