近日,美国哈佛大学Lukin, Mikhail D.团队实现了在中性原子量子计算机上探测基塔耶夫蜂窝模型。相关论文于2025年9月10日发表在《自然》杂志上。
多体系统的量子模拟是量子计算机最有前景的应用之一。特别是,基于强相关费米子的模型是他们理解量子化学和材料问题的核心,并且可以导致物质的奇异拓扑相。然而,由于费米子的非局域性质,这种模型很难用量子比特设备来模拟。
研究组实现了一种基于可重构原子阵列的二维费米子系统数字量子模拟体系结构。他们利用基于Kitaev模型的蜂巢晶格上的费米子到量子比特的映射,其中费米子统计被编码为远程纠缠态。研究组有效地准备了这些态的主题测量和前馈,通过Floquet工程实现了后续的费米子演化,通过可调谐的纠缠门穿插原子重排,并通过内置误差检测改进了结果。
利用基塔耶夫自旋模型的这种费米子描述,研究组有效地制备了其复杂相图中的拓扑态,并通过计算奇陈数来验证非阿贝尔自旋-液相。研究组通过实现可调动力学和直接探测费米子交换统计来进一步探索这个二维费米子系统。最后,研究组模拟了强相互作用,并研究了方形晶格上费米-哈伯德模型的动力学。这些结果为材料科学、化学和高能物理中复杂费米子系统的数字量子模拟铺平了道路。
附:英文原文
Title: Probing the Kitaev honeycomb model on a neutral-atom quantum computer
Author: Evered, Simon J., Kalinowski, Marcin, Geim, Alexandra A., Manovitz, Tom, Bluvstein, Dolev, Li, Sophie H., Maskara, Nishad, Zhou, Hengyun, Ebadi, Sepehr, Xu, Muqing, Campo, Joseph, Cain, Madelyn, Ostermann, Stefan, Yelin, Susanne F., Sachdev, Subir, Greiner, Markus, Vuleti, Vladan, Lukin, Mikhail D.
Issue&Volume: 2025-09-10
Abstract: Quantum simulations of many-body systems are among the most promising applications of quantum computers1. In particular, models based on strongly correlated fermions are central to our understanding of quantum chemistry and materials problems2, and can lead to exotic, topological phases of matter3,4. However, owing to the non-local nature of fermions, such models are challenging to simulate with qubit devices5. Here we realize a digital quantum simulation architecture for two-dimensional fermionic systems based on reconfigurable atom arrays6. We utilize a fermion-to-qubit mapping based on Kitaev’s model on a honeycomb lattice3, in which fermionic statistics are encoded using long-range entangled states7. We prepare these states efficiently using measurement8 and feedforward9, realize subsequent fermionic evolution through Floquet engineering10,11 with tunable entangling gates12 interspersed with atom rearrangement, and improve results with built-in error detection. Leveraging this fermion description of the Kitaev spin model, we efficiently prepare topological states across its complex phase diagram13 and verify the non-Abelian spin-liquid phase3 by evaluating an odd Chern number14,15. We further explore this two-dimensional fermion system by realizing tunable dynamics and directly probing fermion exchange statistics. Finally, we simulate strong interactions and study the dynamics of the Fermi–Hubbard model on a square lattice. These results pave the way for digital quantum simulations of complex fermionic systems for materials science, chemistry16 and high-energy physics17.
DOI: 10.1038/s41586-025-09475-0
Source: https://www.nature.com/articles/s41586-025-09475-0
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html