近日,瑞士伯尔尼大学Roman Fasel团队研究了具有周期性卟啉边缘延伸的之字形石墨烯纳米带。这一研究成果发表在2025年8月21日出版的《自然-化学》杂志上。
具有之字形边缘的石墨烯纳米带具有可调的带隙和自旋极化的边缘状态,是一种很有前途的自旋电子器件材料。卟啉提供互补的好处,如理想的光电特性。
研究组通过沿带状主干横向嵌入卟啉的锯齿形边缘GNRs的表面合成,将这些特征结合在一个混合系统中。通过扫描探针的方法,他们发现这种设计实现了卟啉和GNR之间的强电子耦合。对于过渡金属卟啉,远端金属中心之间明显的交换耦合是由π-电子系统介导的。这种混合的d和π电子带系统引入了碳纳米材料的自旋轨道耦合和磁各向异性,在电子自旋的相干电控制方面具有很大的前景。
附:英文原文
Title: Zigzag graphene nanoribbons with periodic porphyrin edge extensions
Author: Xiang, Feifei, Gu, Yanwei, Kinikar, Amogh, Bassi, Nicol, Ortega-Guerrero, Andres, Qiu, Zijie, Grning, Oliver, Ruffieux, Pascal, Pignedoli, Carlo A., Mllen, Klaus, Fasel, Roman
Issue&Volume: 2025-08-21
Abstract: Graphene nanoribbons (GNRs) with zigzag edges are promising materials for spintronic devices due to tunable bandgaps and spin-polarized edge states. Porphyrins offer complementary benefits such as desirable optoelectronic properties. Here we combine these features in a hybrid system by means of the on-surface synthesis of zigzag-edge GNRs embedded with porphyrins laterally fused along the ribbon backbone. Using scanning probe methods, we show that this design achieves strong electronic coupling between the porphyrin and the GNR. For transition metal porphyrins, pronounced exchange coupling between distant metal centres is mediated by the π-electron system. Such a hybrid d and π electron ribbon system introduces spin–orbit coupling and magnetic anisotropy to carbon nanomaterials, and holds great promise for coherent electrical control of electron spins.
DOI: 10.1038/s41557-025-01887-9
Source: https://www.nature.com/articles/s41557-025-01887-9
Nature Chemistry:《自然—化学》,创刊于2009年。隶属于施普林格·自然出版集团,最新IF:24.274
官方网址:https://www.nature.com/nchem/
投稿链接:https://mts-nchem.nature.com/cgi-bin/main.plex