近日,宁波大学材韩磊团队报道了供体-受体-供体型有机分子作为高效电极,形成高性能钠离子电池的快速扩散路径。相关论文于2025年8月18日发表在《德国应用化学》杂志上。
含羰基有机电极由于其优异的氧化还原可逆性和结构可调性,被广泛认为是钠离子电池中传统无机化合物的理想替代品。然而,在这些材料中构建有效的Na+扩散通道是非常具有挑战性的。
为了解决这一问题,研究组设计了一种新的有机分子N,N '' -双(3,4,5-三甲氧基苯基)-1,4,5,8-萘二酰亚胺(NDI-DTMA),它具有供体-受体-供体(D-A-D)结构。D-A-D结构显著提高了单个有机材料的π共轭程度,同时缩小了其带隙,促进了电子沿NDI-DTMA骨架的传输。此外,3,4,5-三甲氧基苯基不仅抑制了溶解问题,还通过构建高效的传输通道,扩大了分子层平面间距,从而促进了 Na+ 的迁移。
作为钠离子电池 (SIBs) 的电极材料,得益于其快速的 Na+ 反应动力学,NDI-DTMA 在 1 A g−1 的电流密度下循环 2000 次后,仍能保持 200 mAh g−1 的可逆比容量。通过系统研究固态电解质界面相(SEI)的异常容量增加和动态演变,研究组阐明了独特的NDI-DTMA结构实现卓越储能性能的基本机制。这项工作开创了有机小分子的设计范式,同时解决了低溶解度、高导电性和快速离子传输问题,从而为SIB提供了一种变革策略。
附:英文原文
Title: A Donor–Acceptor-Donor-type Organic Molecule as an Effective Electrode to Form Rapid Diffusion Pathway for High-Performance Sodium-Ion Batteries
Author: Yuhui Wang, Jie Guo, Yifan Tang, Shuangxing Cui, Wan Cui, Jinglun Yang, Guochang Li, Xunwen Xiao, Qichun Zhang, Lei Han
Issue&Volume: 2025-08-18
Abstract: Carbonyl-containing organic electrodes have been widely considered as ideal substitutes for traditional inorganic compounds in sodium-ion batteries (SIBs) due to their excellent redox reversibility and structural tunability. However, constructing effective Na+ diffusion channels in these materials is very challenging. To address this issue, we design a new organic molecule, N,N’-bis(3,4,5-trimethoxyphenyl)-1,4,5,8-naphthalenediimide (NDI-DTMA), containing a donor–acceptor–donor (D–A–D) structure. The D–A–D architecture significantly enhances π-conjugation extent of single organic material while narrowing its bandgap, facilitating electron transportation along the NDI-DTMA skeletons. Moreover, 3,4,5-trimethoxyphenyl groups not only suppress dissolution issue but also enlarge the intermolecular planar spacing for Na+ mobility through constructing efficient transport channels. As an electrode material for SIBs, NDI-DTMA achieves a reversible capacity of 200 mAh g1 after 2000 cycles at 1 A g1 owing to its fast Na+ kinetics. Through systematic investigation on the anomalous capacity increase and the dynamic evolution of solid electrolyte interphase (SEI), we have elucidated the fundamental mechanisms that the distinctive NDI-DTMA architecture enables exceptional energy storage performance. This work pioneers a design paradigm of organic small molecules that simultaneously address low solubility, high conductivity, and rapid ion transport, thereby providing a transformative strategy for SIBs.
DOI: 10.1002/anie.202513887
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202513887
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx