近日,美国耶鲁大学Rakich, Peter T.团队实现了量子体制中长寿命体声子的光力学控制。2025年8月11日出版的《自然—物理学》杂志发表了这一最新研究成果。
机械振荡器的高保真量子光力学控制需要在长寿命声子激发上执行高效、低噪声操作的能力。微加工高泛音体共波谐振器(μHBAR)支持10GHz,相干时间超过1毫秒。
研究组展示了一个基于μHBAR的腔光力学系统,该系统允许量子光力学控制单个高相干声子模式。他们对声子模式进行激光冷却,从大约22声子到小于0.4声子,对应于基于激光的基态冷却,质量为7.5 μg的机械物体。在冷却过程中,该研究团队没有观察到任何吸收引起的加热,这证明了HBAR光机械系统对寄生加热的弹性。他们的工作表明,μ hbar有希望作为量子光力学系统的基础,具有高效、低噪声的光子-声子转换所必需的退相干性。
附:英文原文
Title: Optomechanical control of long-lived bulk acoustic phonons in the quantum regime
Author: Diamandi, Hilel Hagai, Luo, Yizhi, Mason, David, Kanmaz, Tevfik Bulent, Ghosh, Sayan, Pavlovich, Margaret, Yoon, Taekwan, Behunin, Ryan, Puri, Shruti, Harris, Jack G. E., Rakich, Peter T.
Issue&Volume: 2025-08-11
Abstract: High-fidelity quantum optomechanical control of a mechanical oscillator requires the ability to perform efficient, low-noise operations on long-lived phononic excitations. Microfabricated high-overtone bulk acoustic wave resonators (μHBARs) support high-frequency mechanical modes above 10GHz with coherence times exceeding one millisecond. Here we demonstrate a μHBAR-based cavity optomechanical system that permits quantum optomechanical control of individual high-coherence phonon modes. We perform laser cooling of the phonon modes from an occupation of approximately 22 phonons to fewer than 0.4, corresponding to laser-based ground-state cooling of a mechanical object with a mass of 7.5μg. During the cooling process we do not observe any absorption-induced heating, demonstrating the resilience of the HBAR optomechanical systems against parasitic heating. Our work demonstrates that μHBARs are promising as the basis for quantum optomechanical systems with robustness to decoherence that is necessary for efficient, low-noise photon–phonon conversion.
DOI: 10.1038/s41567-025-02989-4
Source: https://www.nature.com/articles/s41567-025-02989-4