近日,德国杜塞尔多夫实验物理研究所S. Schiller团队研究了H2+的高精度激光光谱和质子-电子质量比。这一研究成果发表在2025年8月6日出版的《自然》杂志上。
分子氢离子(MHI)是三体系统,适合在以下几个领域提高人们对其知识:基本常数、量子物理的测试、寻找新的粒子间力、弱等效原理的测试,一旦反分子ppe+可用,新的电荷偶对-时间反转不变性和局部位置不变性的测试。为了实现这些目标,需要对几种同位素物,特别是氢+2进行高精度的激光光谱分析。
研究组报道了氢分子离子(H2+)振转能级跃迁的无多普勒激光光谱实验,实现了高达 2.2 × 1013 的谱线分辨率。他们精确测定了该跃迁频率,其相对不确定度达到 8 × 10-12。还测定了其自旋-转动耦合系数,不确定度为 0.1 kHz,该值与最新的理论预测值一致。综合研究组的理论和实验 H2+ 数据,他们推得质子-电子质量比(md/mp)的新数值。该数值与质谱法测得的值相符,且不确定度降低了 2.3 倍。
结合 MHI(分子氢离子)、H/D(氢/氘)及 μ 子 H/D 数据,研究组以 1.1 × 10-10的绝对不确定度测定了重子质量比(md/mp)。该数值与直接测量的质量比一致。最后,研究组展示了一个理论预测值与实验结果之间的吻合,其相对不确定度为 8.1 × 10-12。这两项结果显著地证实了量子理论的预测能力,并在这些精度水平上未发现超出标准模型的新物理效应。
附:英文原文
Title: High-accuracy laser spectroscopy of H+2 and the proton–electron mass ratio
Author: Alighanbari, S., Schenkel, M. R., Korobov, V. I., Schiller, S.
Issue&Volume: 2025-08-06
Abstract: The molecular hydrogen ions (MHI) are three-body systems suitable for advancing our knowledge in several domains: fundamental constants, tests of quantum physics, search for new interparticle forces, tests of the weak equivalence principle1 and, once the anti-molecule ppe+ becomes available, new tests of charge–parity–time-reversal invariance and local position invariance1,2,3. To achieve these goals, high-accuracy laser spectroscopy of several isotopologues, in particular H+2, is required4. Here we present a Doppler-free laser spectroscopy of a H+2 rovibrational transition, achieving line resolutions as large as 2.2×1013. We accurately determine the transition frequency with 8×1012 fractional uncertainty. We also determine the spin–rotation coupling coefficient with 0.1kHz uncertainty and its value is consistent with the state-of-the-art theory prediction5. The combination of our theoretical and experimental H+2 data allows us to deduce a new value for the proton-electron mass ratio mp/me. It is in agreement with the value obtained from mass spectrometry and has 2.3 times lower uncertainty. From combined MHI, H/D and muonic H/D data, we determine the baryon mass ratio md/mp with 1.1×1010 absolute uncertainty. The value agrees with the directly measured mass ratio6. Finally, we present a match between a theoretical prediction and an experimental result, with a fractional uncertainty of 8.1×1012. Both results indicate a notable confirmation of the predictive power of quantum theory and the absence of beyond-the-standard-model effects at these levels.
DOI: 10.1038/s41586-025-09306-2
Source: https://www.nature.com/articles/s41586-025-09306-2
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html