近日,西班牙巴塞罗那科学技术学院Frank H. L. Koppens团队报道了莫尔超晶格中利用负微分电导率实现单光子探测。2025年8月7日,《科学》杂志发表了这一成果。
单个光量子探测对于量子信息、空间探索、先进机器视觉和基础科学至关重要。
在这项工作中,研究组介绍了一种利用莫尔材料中高光敏非平衡电子相的单光子探测机制。利用双层石墨烯/六方氮化硼超晶格中的可调谐带,他们设计了负微分电导和能够探测单光子的灵敏双稳态。在这种状态下,研究组展示了在中红外(11.3微米)和可见波长(675纳米)以及温度高达25开尔文下的单光子计数。
该探测器为宽带高温量子技术提供了前景,与互补的金属氧化物半导体兼容,可无缝集成到光子集成电路中。分析结果表明,潜在的机制源于超晶格诱导的负微分速度。
附:英文原文
Title: Single-photon detection enabled by negative differential conductivity in moiré superlattices
Author: Krystian Nowakowski, Hitesh Agarwal, Sergey Slizovskiy, Robin Smeyers, Xueqiao Wang, Zhiren Zheng, Julien Barrier, David Barcons Ruiz, Geng Li, Riccardo Bertini, Matteo Ceccanti, Iacopo Torre, Bert Jorissen, Antoine Reserbat-Plantey, Kenji Watanabe, Takashi Taniguchi, Lucian Covaci, Milorad V. Miloevi, Vladimir Fal’ko, Pablo Jarillo-Herrero, Roshan Krishna Kumar, Frank H. L. Koppens
Issue&Volume: 2025-08-07
Abstract: Detecting individual light quanta is essential for quantum information, space exploration, advanced machine vision, and fundamental science. In this work, we introduce a single-photon detection mechanism using highly photosensitive nonequilibrium electron phases in moiré materials. Using tunable bands in bilayer graphene/hexagonal boron nitride superlattices, we engineer negative differential conductance and a sensitive bistable state capable of detecting single photons. Operating in this regime, we demonstrate single-photon counting at mid-infrared (11.3 micrometers) and visible wavelengths (675 nanometers) and temperatures up to 25 kelvin. This detector offers prospects for broadband, high-temperature quantum technologies with complementary metal-oxide semiconductor compatibility and seamless integration into photonic-integrated circuits. Our analysis suggests that the underlying mechanism originates from superlattice-induced negative differential velocity.
DOI: adu5329
Source: https://www.science.org/doi/10.1126/science.adu5329