中国科学院地球环境研究所陈骥团队研究了过去50年海洋生态化学计量的全球尺度变化。这一研究成果于2025年7月3日发表在《自然—地球科学》杂志上。
碳(C)、氮(N)和磷(P)的元素化学计量调节海洋生物地球化学循环,并支持Redfield比率范式。然而,它的全球变率和对环境变化的反应仍然缺乏限制。
研究组编制了一个全球数据集,其中包括56,031个浮游生物(颗粒)和388,515个海水(溶解)样本,从1971年到2020年,从表面到1,000米,以评估海洋碳:氮:磷比率的时空动态。研究表明,浮游碳磷比和氮磷比,以及海洋碳氮比和碳磷比,在整个研究期间始终超过Redfield比,表明与标准化学计量学存在广泛偏差。浮游碳氮比和氮磷比在20世纪后期显著上升,随后下降,表明磷限制逐渐缓解,可能是由人为磷输入增加驱动的。
深度分辨模式显示海洋C:N和C:P随深度的增加而减少,而N:P随深度的增加而增加,这是由于再矿化和微生物养分循环的差异。他们的发现强调了年代际尺度上的动态、非静态化学计量模式,为改进生物地球化学模型中元素循环的表示和改进海洋生态系统对全球变化的响应预测提供了关键的观测约束。
附:英文原文
Title: Global-scale shifts in marine ecological stoichiometry over the past 50 years
Author: Liu, Ji, Wang, Hai, Mou, Juan, Penuelas, Josep, Delgado-Baquerizo, Manuel, Martiny, Adam C., Zhou, Guiyao, Hutchins, David A., Inomura, Keisuke, Lomas, Michael W., Fakhraee, Mojtaba, Pellegrini, Adam, Kohler, Tyler J., Deutsch, Curtis A., Planavsky, Noah, Lapointe, Brian, Zhang, Yong, Li, Yanyan, Zhou, Jiacong, Zhang, Yixuan, Sun, Siyi, Li, Yong, Zhang, Wei, Cao, Junji, Chen, Ji
Issue&Volume: 2025-07-03
Abstract: The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) regulates marine biogeochemical cycles and underpins the Redfield ratio paradigm. However, its global variability and response to environmental change remain poorly constrained. Here we compile a global dataset of 56,031 plankton (particulate) and 388,515 seawater (dissolved) samples from 1971 to 2020, spanning surface to 1,000m depth, to assess spatial and temporal dynamics in marine C:N:P ratios. We show that planktonic C:P and N:P, and oceanic C:N and C:P ratios, consistently exceed Redfield ratio throughout the study period, indicating widespread deviation from canonical stoichiometry. Planktonic C:N and N:P ratios rose markedly in the late twentieth century, followed by a decline, suggesting a progressive alleviation of P limitation, probably driven by increased anthropogenic P inputs. Depth-resolved patterns show decreasing oceanic C:N and C:P, and increasing N:P ratios with depth, attributable to differential remineralization and microbial nutrient cycling. Our findings highlight dynamic, non-static stoichiometric patterns over decadal scales, offering critical observational constraints for refining the representation of elemental cycling in biogeochemical models and improving projections of marine ecosystem responses to global change.
DOI: 10.1038/s41561-025-01735-y
Source: https://www.nature.com/articles/s41561-025-01735-y