近日,中国科学院高能物理研究所尹文艳团队研究了O诱导的双原子Fe–Mo模拟酶在通用pH值下高效电催化氮还原。2025年7月28日,《美国化学会志》发表了这一成果。
电化学氮还原反应(ENRR)为NH3的合成提供了一条可持续的途径。然而,设计催化剂促进有效的电子/质子转移和多种中间体的氢化仍然是一个挑战。
受天然氮酶蛋白的启发,研究组设计了一种仿生Fe-Mo双原子催化剂(FeMo-CDW(CT-3h)),用于高效的ENRR。利用O原子诱导的原子约束效应对Fe-Mo双原子位的微环境进行了精确调节,O原子调节了这些位的活性。具有5个O原子的FeMo-CDW(CT-3h)由于其最佳的电子转移效率,在通用pH下获得了破纪录的NH3产率以及高稳定性(250 h和10个循环)。
特别是在0.1 M HCl条件下,NH3的产率为336.03 μg h-1 cm-2,比以往报道的最大值高出3倍以上。理论计算表明,Fe-Mo d轨道与N2*反键轨道的杂化增强了电子转移,扩展和减弱了N≡N键,加速了质子转移和氢化,从而增加了N2*反键轨道,增强了电子转移,扩展和减弱了N≡N键,加速了质子转移和氢化,从而增加了NH3的生成。
附:英文原文
Title: O-Induced Diatomic Fe–Mo Mimetic Enzyme for Efficient Electrocatalytic Nitrogen Reduction at Universal pH
Author: Yuanyuan Yu, Qingtong Zhang, Simin Wei, Guangfu Qian, Qian He, Wenyan Yin, Douyong Min, Shuangfei Wang, Yuliang Zhao
Issue&Volume: July 28, 2025
Abstract: Electrochemical nitrogen reduction reaction (ENRR) provides a sustainable route for the NH3 synthesis. However, designing catalysts that facilitate efficient electron/proton transfer and the hydrogenation of multiple intermediates remains a challenge. In this study, inspired by the natural nitrogenase proteins, a biomimetic Fe–Mo diatomic catalyst (FeMo-CDW(CT-3h)) was designed for efficient ENRR. The microenvironment of Fe–Mo diatomic sites was precisely tuned using the O-induced atomic confinement effect, where O atoms modulate the activity of the sites. FeMo-CDW(CT-3h) with four O atoms achieves a record-breaking NH3 yield at universal pH as well as high stability (250 h and 10 cycles) due to its optimal electron transfer efficiency. In particular, the NH3 yield of 336.03 μg h–1 cm–2 in 0.1 M HCl was over three times higher than the previously reported maximum. Theoretical calculations reveal that the hybridization of Fe–Mo d orbitals with N2* antibonding orbitals enhances electron transfer, extends and weakens the N≡N bond, and accelerates proton transfer and hydrogenation, thereby increasing NH* antibonding orbitals enhances electron transfer, extends and weakens the N≡N bond, and accelerates proton transfer and hydrogenation, thereby increasing NH3 generation.
DOI: 10.1021/jacs.5c07762
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c07762
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000