中国科学院上海高等研究院张继超团队实现了镍辅助脱氧核糖核酸工程胶体晶体脱水。这一研究成果于2025年7月24日发表在《美国化学会志》上。
在胶体晶体工程中,DNA通过可编程的粒子间相互作用在水环境中实现了对晶体对称和结构的精确控制。然而,实际应用通常需要干态操作,因此需要采用技术策略将这些组件转化为独立的固态超材料。由于直接脱水通常会引起DNA变形和毛细力导致结构崩溃,因此保持结构完整性成为一个关键挑战,特别是对于具有宏观功能的大型晶体。
研究组介绍了一种镍离子辅助冷冻干燥策略,该策略结合了可逆的Ni2+-DNA磷酸盐配位来缓解应力和冻干来减少界面损伤。这种方法可以快速制造固态胶体晶体(在2小时内),同时保持从纳米尺度到宏观尺度的层次顺序。尽管晶格收缩高达45%,但结构表征证实了晶体对称性的保留,表面分析显示了与原子晶体相似的多维缺陷。值得注意的是,这种方法有助于制造跨越数十微米的单片单晶,具有平坦的表面和增强的金属反射率。这项工作克服了现有工艺中刚性和适应性的权衡,为光子电路和近场光学器件的应用提供了可扩展的胶体超材料途径。
附:英文原文
Title: Nickel-Assisted Dehydration of DNA-Engineered Colloidal Crystals
Author: Wenhe Ma, Tianyi Lu, Soumia Cheddah, Bochen Li, Kun Dai, Xiaoliang Chen, Kai Xia, Chunhai Fan, Jichao Zhang, Guangbao Yao
Issue&Volume: July 24, 2025
Abstract: In colloidal crystal engineering, DNA has enabled precise control over crystal symmetry and architecture through programmable interparticle interactions in aqueous environments. However, practical applications typically require dry-state operation, necessitating robust strategies to transform these assemblies into free-standing solid-state metamaterials. As direct dehydration often induces structural collapse due to DNA deformation and capillary forces, the preservation of structural integrity becomes a critical challenge, particularly for large crystals with macroscopic functionality. Here, we introduce a nickel ion-assisted freeze-drying strategy that combines reversible Ni2+-DNA phosphate coordination for stress mitigation with lyophilization to reduce interfacial damage. This approach enables rapid fabrication (within 2 h) of solid-state colloidal crystals while maintaining hierarchical order from nanoscale to macroscale. Structural characterization confirms retention of crystallographic symmetry despite up to 45% lattice contraction, and surface analysis reveals multidimensional defects analogous to those in atomic crystals. Notably, this approach facilitates the fabrication of monolithic single crystals spanning tens of micrometers, featuring flat surfaces and enhanced metallic reflectivity. This work overcomes the rigidity-adaptability trade-off in existing processes, offering a scalable route to colloidal metamaterials for applications in photonic circuits and near-field optical devices.
DOI: 10.1021/jacs.5c08215
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c08215
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000