近日,北京航空航天大学范文峰团队研究了热原子自旋系综中的磁控与光控:原理与应用。这一研究成果发表在2025年7月21日出版的《中国科学:物理学 力学 天文学》杂志上。
研究组综述了热原子自旋系综的磁和光控制原理,以及在量子精密测量中的最新进展和应用。作为一种实用的宏观量子系统,热原子自旋综因其卓越的灵敏度、精度和可扩展性而成为下一代量子传感器的关键平台。该综述强调了磁光调制技术如何用于提取有关自旋动力学和系统状态的实时信息,从而产生高质量的可观测值,作为反馈调节、量子态估计和脉冲操作等高级控制策略的基础。这些技术在提高测量灵敏度、动态响应和长期稳定性方面发挥着至关重要的作用。
此外,包括闭环反馈和卡尔曼滤波在内的现代控制理论的结合,促进了原子自旋动力学的实时优化,在原子磁强计、共磁强计、惯性传感器和微波微波激射器等一系列应用中解锁了新的灵敏度水平。研究组系统地阐述了热自旋综中调制、测量和控制的协同相互作用,探讨了其在广泛的科学和工程应用中的潜力。这些技术进步为超灵敏磁场探测提供了坚实的基础,并在暗物质探测和引力波观测等前沿领域显示出良好的前景。展望未来,这些创新有望进一步推动量子传感器的小型化和集成化,显著扩展其跨学科的实用性。
附:英文原文
Title: Magnetic and optical control in thermal atomic spin ensembles: Principles and applications
Author: Fan, Shimiao, Pei, Hongyu, Quan, Wei, Jia, Yifan, Liu, Jiaxin, Fan, Wenfeng
Issue&Volume: 2025-07-21
Abstract: This paper provides a comprehensive review of the principles of magnetic and optical control in thermal atomic spin ensembles, as well as recent advances and applications in quantum precision measurement. As a practical macroscopic quantum system, thermal atomic spin ensembles have emerged as a key platform for next-generation quantum sensors due to their exceptional sensitivity, accuracy, and scalability. The review emphasizes how magneto-optical modulation techniques can be employed to extract real-time information about spin dynamics and system states, thereby generating high-quality observables that serve as the foundation for advanced control strategies such as feedback regulation, quantum state estimation, and pulsed manipulation. These techniques are shown to play a crucial role in enhancing measurement sensitivity, dynamic response and long-term stability. In addition, the incorporation of modern control theories, including closed-loop feedback and Kalman filter, has facilitated real-time optimization of atomic spin dynamics, unlocking new levels of sensitivity across a range of applications such as atomic magnetometers, co-magnetometers, inertial sensors, and microwave masers. This paper systematically discusses the synergistic interplay of modulation, measurement, and control in thermal spin ensembles, exploring its potential across a wide range of scientific and engineering applications. These technological advances provide a solid foundation for ultra-sensitive magnetic field detection and show promising prospects in frontier fields such as dark matter detection and gravitational wave observation. Looking ahead, such innovations are expected to further drive the miniaturization and integration of quantum sensors, significantly expanding their utility across disciplines.
DOI: 10.1007/s11433-025-2718-0
Source: https://link.springer.com/article/10.1007/s11433-025-2718-0
Science China Physics, Mechanics & Astronomy:《中国科学:物理学 力学 天文学》,创刊于2003年。隶属于施普林格·自然出版集团,最新IF:6.4
官方网址:https://www.springer.com/journal/11433
投稿链接:https://mc03.manuscriptcentral.com/scpma