当前位置:科学网首页 > 小柯机器人 >详情
植物苯丙氨酸衍生水杨酸的生物合成解译
作者:小柯机器人 发布时间:2025/7/24 14:42:40

植物苯丙氨酸衍生水杨酸的生物合成解译,这一成果由浙江大学潘荣辉小组经过不懈努力而取得。2025年7月23日出版的《自然》杂志发表了这一最新研究成果。

本研究揭示了苯丙氨酸衍生的SA在水稻中的生物合成途径,通过鉴定了三种专用酶-过氧化物异构体苯甲酰辅酶A:苄基醇苯甲酰转移酶(BEBT)、内质网相关细胞色素P450酶苯甲酰苯甲酸羟化酶(BBH)和胞质苯甲酰水杨酸酯酶(BSE),它们依次将苯甲酰辅酶A转化为苯甲酸苄酯、苯甲酸苄酯和SA。该三酶模块的病原菌诱导基因表达模式和SA生物合成功能在多种植物中是保守的。这项工作填补了一种关键植物防御激素生物合成方面的重大知识空白,为创造抗病作物的新策略奠定了基础。

据悉,水杨酸(Salicylic acid, SA)是一种泛素植物激素,在人类文明中有着悠久的历史。由于SA在协调植物病原体防御中的核心作用,了解SA的生物合成是植物免疫研究和作物改良的基础。在拟南芥中,异分支酸衍生的SA生物合成已经得到了很好的定义。然而,越来越多的证据表明,苯丙氨酸衍生的SA在许多其他植物物种中具有重要的生物合成功能。

附:英文原文

Title: Deciphering phenylalanine-derived salicylic acid biosynthesis in plants

Author: Wang, Yukang, Song, Shuyan, Zhang, Wenxuan, Deng, Qianwen, Feng, Yanlei, Tao, Mei, Kang, Mengna, Zhang, Qi, Yang, Lijia, Wang, Xinyu, Zhu, Changan, Wang, Xiaowen, Zhu, Wanxin, Zhu, Yixiao, Cao, Pengfei, Chen, Jia, Pan, Jinheng, Feng, Shan, Chen, Xianyan, Dai, Huaxin, Song, Shiyong, Yang, Jinghua, Zhao, Tianlun, Cao, Fangbin, Tao, Zeng, Shen, Xingxing, Last, Robert L., Hu, Jianping, Yu, Jingquan, Fan, Pengxiang, Pan, Ronghui

Issue&Volume: 2025-07-23

Abstract: Salicylic acid (SA) is a ubiquitous plant hormone with a long history in human civilization1,2. Because of the central role of SA in orchestrating plant pathogen defence, understanding SA biosynthesis is fundamental to plant immunity research and crop improvement. Isochorismate-derived SA biosynthesis has been well defined in Arabidopsis. However, increasing evidence suggests a crucial function for phenylalanine-derived SA biosynthesis in many other plant species1. Here we reveal the phenylalanine-derived SA biosynthetic pathway in rice by identifying three dedicated enzymes — peroxisomal benzoyl-CoA:benzyl alcohol benzoyltransferase (BEBT), the endoplasmic reticulum-associated cytochrome P450 enzyme benzylbenzoate hydroxylase (BBH), and cytosolic benzylsalicylate esterase (BSE) that sequentially convert benzoyl-CoA to benzylbenzoate, benzylsalicylate and SA. The pathogen-induced gene expression pattern and SA biosynthetic functions of this triple-enzyme module are conserved in diverse plants. This work fills a major knowledge gap in the biosynthesis of a key plant defence hormone, establishing a foundation for new strategies to create disease-resistant crops.

DOI: 10.1038/s41586-025-09280-9

Source: https://www.nature.com/articles/s41586-025-09280-9

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html