近日,韩国汉阳大学Park, Won Il团队研究了图像处理与光学矩阵矢量乘法器实现的编码和解码任务。相关论文于2025年7月22日发表在《光:科学与应用》杂志上。
研究组介绍了一种基于光学神经网络(ONN)的自动编码器,用于有效的图像处理,利用专门的光学矩阵矢量乘法器进行编码和解码任务。为了解决高效解码的挑战,他们提出了一种通过标量乘法优化输出处理的方法,提高了生成高维输出的性能。通过采用系统上的迭代调谐,研究组减轻了硬件缺陷和噪声,逐步提高图像重建精度到接近数字质量。
此外,该方法支持降噪和光学图像生成,支持去噪自编码器、变分自编码器和生成对抗网络等模型。该研究结果表明,基于ONN的系统有潜力超越传统电子系统的能源效率,在医疗成像、自动驾驶汽车和边缘计算等应用中实现实时、低功耗的图像处理。
附:英文原文
Title: Image processing with Optical matrix vector multipliers implemented for encoding and decoding tasks
Author: Kim, Minjoo, Kim, Yelim, Park, Won Il
Issue&Volume: 2025-07-22
Abstract: This study introduces an optical neural network (ONN)-based autoencoder for efficient image processing, utilizing specialized optical matrix-vector multipliers for both encoding and decoding tasks. To address the challenges in efficient decoding, we propose a method that optimizes output processing through scalar multiplications, enhancing performance in generating higher-dimensional outputs. By employing on-system iterative tuning, we mitigate hardware imperfections and noise, progressively improving image reconstruction accuracy to near-digital quality. Furthermore, our approach supports noise reduction and optical image generation, enabling models such as denoising autoencoders, variational autoencoders, and generative adversarial networks. Our results demonstrate that ONN-based systems have the potential to surpass the energy efficiency of traditional electronic systems, enabling real-time, low-power image processing in applications such as medical imaging, autonomous vehicles, and edge computing.
DOI: 10.1038/s41377-025-01904-z
Source: https://www.nature.com/articles/s41377-025-01904-z
Light: Science & Applications:《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4
官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex