西北大学惠俊峰团队近日研究了弯曲WS2上的应变工程Rh单原子制氢和耦合光化学水裂解。该研究于2025年7月10日发表在《美国化学会志》上。
氢是一种很有前途的清洁能源载体,但水电解的高能耗限制了它的广泛应用。催化是提高制氢效率和降低能源成本的关键。然而,以d波段理论为指导的传统催化剂设计在预测吸附行为方面存在不一致性,析氧反应(OER)仍然是主要的效率瓶颈。
为了解决这些挑战,研究组开发了一种应变工程Rh单原子催化剂,锚定在碳纳米管支撑的弯曲WS2上(RhSA/WS2@CNT)来调节电子结构。该催化剂在10 mA cm-2条件下具有17.4 mV的超低过电位,其质量活性是普通Pt/C催化剂的65倍。机理分析表明,H*吸附趋势与d波段理论预测相矛盾,但可以用轨道对称适应来解释,其中应变调制的dxz轨道在控制吸附能量学中起主要作用。
除了催化剂设计之外,HER催化剂还与光催化碘化物氧化反应(IOR)耦合,以取代OER,并将水分解电压降低到0.7 V。该研究不仅介绍了一种优化单原子催化剂的应变工程策略,而且还展示了一种提高能源效率的耦合光电系统,为可持续制氢提供了另一种方法。
附:英文原文
Title: Strain-Engineered Rh Single Atoms on Curved WS2 for Hydrogen Production and Coupled Photochemical Water Splitting
Author: Ting Gao, Jie Gu, Changheng Yang, Rui Wang, Chan Wang, Pengfei Zhang, Jiatong Li, Xiaoyan Zheng, Yunmiao Fan, Puheng Yang, Xiufu Hua, Junfeng Hui, Huigang Zhang
Issue&Volume: July 10, 2025
Abstract: Hydrogen is a promising clean energy carrier, yet the high energy demand of water electrolysis limits its widespread adoption. Catalysis is crucial to enhance the efficiency of hydrogen production and lower energy costs. However, conventional catalyst design guided by the d-band theory faces inconsistencies in predicting adsorption behavior, and the oxygen evolution reaction (OER) remains a major efficiency bottleneck. To address these challenges, we developed a strain-engineered Rh single-atom catalyst anchored on curved WS2 supported by carbon nanotubes (RhSA/WS2@CNT) to modulate the electronic structure. The resultant catalyst achieves an ultralow overpotential of 17.4 mV at 10 mA cm–2 for the hydrogen evolution reaction (HER) and a mass activity ~65 times higher than that of commercial Pt/C. Mechanistic analysis reveals that the H* adsorption trend contradicts d-band theory predictions but is explained by orbital symmetry adaptation, where the strain-modulated dxz orbital plays a major role in governing adsorption energetics. Beyond catalyst design, the HER catalyst was coupled with a photocatalytic iodide oxidation reaction (IOR) to replace the OER and reduce the water-splitting voltage to 0.7 V. This study not only introduces a strain-engineering strategy to optimize single-atom catalysts but also demonstrates a coupled electro-photo system that enhances energy efficiency, offering an alternative approach for sustainable hydrogen production.
DOI: 10.1021/jacs.5c04928
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c04928
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000