近日,深圳大学张培新团队通过多阴离子氧化还原化学解锁超快动力学不对称异质结,实现了高能量/功率密度和低温锌离子电池。该研究于2025年6月3日发表在《德国应用化学》杂志上。
传统钒基阴极反应动力学缓慢和氧化还原活性不足阻碍了高性能锌离子电池的发展。研究组提出了一种热氧化相工程策略,以构建一个包含VSSe核心和富氧VO2和V2O5界面的相异质结阴极。这种独特的结构利用了显著增加的比表面积,这有助于快速的电极-电解质相互作用,并提高了伪电容贡献。这种集成结构具有优化的配位环境和界面,促进了协同的多阴离子(S/Se/O)和阳离子(V)氧化还原活性,并促进了界面上的有效电荷转移,克服了单相材料中经常观察到的容量和结构不稳定性的内在局限性,特别是在长时间循环过程中。
这种优化的阴极在1 A g-1下实现了432 mAh g-1的创纪录的高可逆容量,超过了轻度氧化和过度氧化的VSSe对应物。值得注意的是,在-10°C的低温条件下,在30 A g-1下进行14000次循环后,它仍保持了80%的容量,表现出前所未有的低温耐久性。由增强的p-d轨道杂化和异质界面处的自旋极化效应驱动的异质结的结构-功能关系,有助于提高氧化还原活性和动力学。这项工作为下一代储能系统设计具有定制表面积和界面特性的多相异质结电极奠定了设计范式。
附:英文原文
Title: Unlocking Ultrafast-Kinetics Asymmetric Heterojunction with Multi-anionic Redox Chemistry Enables High Energy/Power Density and Low-Temperature Zinc-Ion Batteries
Author: Ming Yang, Yuru Lin, Peiwei Chen, Mengnan Lai, Minfeng Chen, Jianhui Zhu, Minfeng Chen, Guomin Li, Yanyi Wang, Mingyan Chuai, Jizhang Chen, Guoliang Chai, Hongwei Mi, Lingna Sun, Chuanxin He, Dingtao Ma, Peixin Zhang
Issue&Volume: 2025-06-03
Abstract: The development of high-performance Zn-ion batteries is hindered by sluggish reaction kinetics and inadequate redox activity in conventional vanadium-based cathodes. Herein, a thermal oxidation phase-engineering strategy is proposed to construct a comprising VSSe core and oxygen-enriched VO2 and V2O5 interfaces-phase heterojunction cathode. This unique architecture leverages a significantly increased specific surface area, which facilitates rapid electrode-electrolyte interactions and boosts pseudocapacitive contributions. This integrated structure, featuring optimized coordination environments and interfaces, promotes synergistic multi-anionic (S/Se/O) and cationic (V) redox activity and facilitates efficient charge transfer across the interfaces, overcoming intrinsic limitations of capacity and structural instability often observed in single-phase materials, especially during prolonged cycling. This optimized cathode achieves a record-high reversible capacity of 432 mAh g-1 at 1 A g-1, surpassing mild-oxidized and over-oxidized VSSe counterparts. Remarkably, it retains 80% capacity after 14000 cycles at 30 A g-1 under cryogenic condition of -10°C, demonstrating unprecedented low-temperature durability. The structure-function relationship of heterojunction driven by enhanced p-d orbital hybridization and spin polarization effects at the heterointerfaces, contributing to the improved redox activity and kinetics. This work establishes a design paradigm for engineering multi-phase heterojunction electrodes with tailored surface area and interfacial properties for next-generation energy storage systems.
DOI: 10.1002/anie.202510907
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202510907
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx