当前位置:科学网首页 > 小柯机器人 >详情
质子交换膜燃料电池中同时解毒铂位点和解缠反应物运输路径的分子组装路线
作者:小柯机器人 发布时间:2025/6/5 13:02:34


武汉大学陈胜利团队近日研究了质子交换膜燃料电池中同时解毒铂位点和解缠反应物运输路径的分子组装路线。这一研究成果发表在2025年6月2日出版的《美国化学会杂志》上。

大幅减少铂(Pt)的使用对于质子交换膜燃料电池(PEMFC)的大规模应用至关重要,PEMFC是一种有望实现碳中和未来的关键氢能技术。目前,低Pt PEMFC在阴极催化剂层(CCL)中的反应和传输动力学缓慢,这是由于全氟磺酸(PFSA)离聚物通过侧链吸附到Pt上以及随之而来的PFSA不均匀聚集造成的。 

研究组通过详细的物理和电化学表征以及分子动力学模拟证明,具有独特化学和几何结构的β-环糊精可以通过分子组装途径有效地解决这些问题。一方面,β-环糊精与PFSA形成氢键分子组装体,有效减轻磺酸盐对Pt的中毒,产生有序的亲水结构域,用于快速质子传输,同时增加了穿过CCL的孔隙率。另一方面,疏水性β-环糊精纳米腔提供了理想的氧气扩散路径。由此形成的CCL和Pt/离聚物界面具有富集的催化位点,以及良好分离和有序的O2和质子传输通道,显著提高了燃料电池的性能。

附:英文原文

Title: A Molecule Assembly Route to Simultaneously Detoxify Platinum Sites and Disentangle Reactant Transport Paths in Proton Exchange Membrane Fuel Cells

Author: Meihua Tang, Huangli Yan, Zhenying Zheng, Hao Zhang, Chengwen Yu, Bin Liu, Shengli Chen

Issue&Volume: June 2, 2025

Abstract: Substantially reducing the platinum (Pt) usage is essential for large-scale application of proton exchange membrane fuel cells (PEMFCs), a key hydrogen-energy technology promising a carbon-neutral future. Currently, the low-Pt PEMFCs suffer from sluggish reaction and transport kinetics in the cathodic catalyst layers (CCLs) caused by the adsorption of perfluorinated sulfonic acid (PFSA) ionomers to Pt via the side chains and the accompanying uneven PFSA aggregation. Herein, we demonstrate, through detailed physical and electrochemical characterizations and molecular dynamics simulations, that β-cyclodextrin with a unique chemical and geometric structure can effectively address these issues through a molecule assembly route. On one side, β-cyclodextrin forms a hydrogen-bonded molecular assembly with PFSA, which effectively mitigates sulfonate poisoning to Pt, produces ordered hydrophilic domains for rapid proton transport, and at the same time increases the porosity crossing CCL. On the other side, the hydrophobic β-cyclodextrin nanocavities provide ideal O2 diffusion paths. The thus formed CCL and Pt/ionomer interface with enriched catalytic sites, and well-segregated and ordered O2 and proton transport channels, remarkably boost the fuel cell performance.

DOI: 10.1021/jacs.5c04479

Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c04479

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000