厦门大学杨阳团队近日报道了集成串联结构分离器可实现双增强稳定界面,助力长循环寿命和高面积容量水性锌-碘电池。2025年6月17日出版的《德国应用化学》杂志发表了这项成果。
水性锌碘电池(AZIB)因其固有的安全性、成本效益和环保性,对下一代储能技术具有巨大的前景。然而,不稳定的界面化学表现为阴极处多碘化物的形成和积累,以及阳极处的枝晶生长和析氢反应(HER),导致容量损失。此外,聚碘化物向阳极的迁移进一步引发了严重的锌腐蚀,加剧了界面的不稳定性。
研究组设计了一种集成的串联结构分离器,包括一个具有缓冲液释放修复机制的In2O3-SiO2(ISO)层和一个以Co纳米颗粒包裹的碳纳米纤维为特征的聚碘吸附催化层(Co@CNF)以实现双重增强的稳定接口。具体来说,ISO层中的两性In2O3有效地中和了OH? 由局部HER产生,同时释放可溶性铟物种。
这些铟物种随后电沉积,在受影响区域形成亲锌和HER抑制位点,恢复界面环境,减轻锌阳极降解。与此同时,theCo@CNF层锚定聚碘化物并显著催化转化动力学,抑制穿梭效应并防止聚碘化物引起的阳极腐蚀。得益于两个电极界面的协同稳定,所制备的Zn|| ISO+Co@CNF||I2全电池实现了2.97 mAh cm-2的高面积容量和超过20000次循环的出色循环稳定性。这项工作为设计实用AZIB的功能分离器提供了宝贵的见解。
附:英文原文
Title: An Integrated Tandem-Structured Separator Enables Dual-Enhanced Stable Interfaces for Long-Cycle-Life and High-Areal-Capacity Aqueous Zinc-Iodine Batteries
Author: Siyang Li, Chenxi Sun, Minghao Zhang, Rong Tang, Minghui Chen, Weiwei Meng, Jin Yang, Yuanhong Kang, Zeheng Lv, Jinbao Zhao, Yang Yang
Issue&Volume: 2025-06-17
Abstract: Aqueous zinc-iodine batteries (AZIBs) hold great promise for next-generation energy storage technologies due to their inherent safety, cost-effectiveness, and environmental friendliness. However, unstable interfacial chemistry manifested as polyiodides formation and accumulation at the cathode, alongside dendrite growth and hydrogen evolution reaction (HER) at the anode results in capacity loss. Moreover, polyiodide migration toward the anode further triggers severe Zn corrosion, exacerbating interfacial instability. Herein, we design an integrated tandem-structured separator comprising an In2O3-SiO2 (ISO) layer with a buffer-release-repair mechanism and a polyiodide adsorption-catalysis layer featuring Co nanoparticles-encapsulated carbon nanofiber (Co@CNF) to achieve dual-enhanced stable interfaces. Specifically, amphoteric In2O3 within the ISO layer effectively neutralizes OH generated by localized HER, concurrently releasing soluble indium species. These indium species subsequently electrodeposit to form zincophilic and HER-inhibiting sites on the affected regions, restoring interfacial environment and mitigating Zn anode degradation. Meanwhile, the Co@CNF layer anchors polyiodides and significantly catalyzes conversion kinetics, suppressing the shuttle effect and preventing polyiodide-induced anode corrosion. Benefiting from the synergistic stabilization of both electrode interfaces, the as-fabricated Zn||ISO+Co@CNF||I2 full cells achieve a high areal capacity of 2.97 mAh cm-2 and remarkable cycling stability over 20,000 cycles. This work provides valuable insights into designing functional separators for practical AZIBs.
DOI: 10.1002/anie.202506849
Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202506849
Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:16.823
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx