近日,南京大学潘丙才团队实现了通过离子配对调节亚纳米通道膜中的离子运输。相关论文于2025年5月7日发表在《美国化学会志》上。
生物离子通道响应环境刺激、调节离子渗透速率和选择性运输特定离子的能力对于维持生理功能至关重要,并在各种实际应用中具有巨大的潜力。在这项研究中,课题组报告了一种能够响应离子刺激的高选择性离子分离膜,从而调节目标离子的渗透速率。该膜由用γ-聚谷氨酸(γ-PGA)分子官能化的二维MXene纳米片构成。其仿生离子通道结构提供了空间限制,以及离子识别和反应位点。值得注意的是,该膜表现出对刺激离子的反应能力,将目标离子渗透速率调节了2个数量级以上,K+/Mg2+选择性超过10.3。
与离子传输主要由离子通道相互作用驱动的传统纳米通道膜不同,该膜通过离子-离子相互作用主导的机制运行。刺激离子的引入动态地改变了亚纳米通道内的离子对形成,从而调节了目标离子的渗透速率。这项研究为纳米环境中的离子传输机制提供了新的视角,反映了更接近现实世界系统的条件。它强调了离子-离子相互作用在调节离子传输中的关键作用,并为具有定制响应性的下一代离子分离膜的设计提供了宝贵的见解。
附:英文原文
Title: Regulate Ion Transport in Subnanochannel Membranes by Ion-Pairing
Author: Rongming Xu, Hang Yu, Jiachun Ren, Weiming Zhang, Yuan Kang, Zhuyuan Wang, Fan Feng, Xiaoli Xia, Jefferson Zhe Liu, Luming Peng, Xiwang Zhang, Bingcai Pan
Issue&Volume: May 7, 2025
Abstract: The ability of biological ion channels to respond to environmental stimuli, regulate ion permeation rates, and selectively transport specific ions is essential for sustaining physiological functions and holds immense potential for various practical applications. In this study, we report a highly selective ion separation membrane capable of responding to ionic stimuli, thereby regulating the permeation rate of the target ions. This membrane is constructed from two-dimensional MXene nanosheets functionalized with γ-poly(glutamic acid) (γ-PGA) molecules. Its biomimetic ion channel structure provides spatial confinements, as well as ion recognition and response sites. Remarkably, the membrane demonstrates the ability to respond to stimulus ions, achieving regulation of target ion permeation rates by over 2 orders of magnitude and achieving a K+/Mg2+ selectivity exceeding 10.3 Unlike traditional nanochannel membranes, where ion transport is predominantly driven by ion-channel interactions, this membrane operates through an ion–ion interaction-dominated mechanism. The introduction of stimulus ions dynamically alters ion-pair formation within the subnanochannels, thereby modulating the permeation rates of target ions. This study provides a fresh perspective on ion transport mechanisms in nanoconfined environments, reflecting conditions closer to those in real-world systems. It underscores the pivotal role of ion–ion interactions in regulating ion transport and offers valuable insights into the design of next-generation ion separation membranes with tailored responsiveness.
DOI: 10.1021/jacs.5c02722
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.5c02722
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000