美国北卡罗莱纳州立大学Gundogdu, Kenan团队研究了钙钛矿的非常规孤子高温超荧光。2025年5月28日,《自然》杂志发表了这一成果。
快速热退相将宏观量子现象限制在低温条件下,并阻碍了它们在环境温度下的使用。对于凝聚介质中的电子激发,退相是由热晶格运动介导的。因此,驯服晶格影响对于在高温下创建集体电子量子态至关重要。尽管偶尔有关于不同平台上高温量子效应的报道,但尚不清楚哪些晶格特性和电子-晶格相互作用导致固体中宏观相干的电子态。
课题组研究了卤化铅钙钛矿中超荧光出现期间宏观极化的强度波动,并表明自发同步的极化子晶格振荡伴随着集体电子偶极发射。他们进一步开发了一个有效的场模型,并从理论上证实了激子-晶格相互作用导致了一个新的电子和结构纠缠的相干扩展孤子态,超过了临界极化子密度。
分析表明,相变同时发生两个过程:非相干无序极化子晶格变形建立有序,而激子之间的宏观量子相干性同时出现。在这种状态下,激子的重组最终会在高温下产生超荧光。该研究建立了钙钛矿脉冲激发后观察到的瞬态超荧光过程与热冷却实现的一般平衡相变之间的基本联系。通过识别钙钛矿结构中的各种电子-晶格相互作用及其在固体中产生集体相干电子效应中的各自作用,该工作为设计和开发表现出高温宏观量子现象的新材料提供了前所未有的见解。
附:英文原文
Title: Unconventional solitonic high-temperature superfluorescence from perovskites
Author: Biliroglu, Melike, Tre, Mustafa, Ghita, Antonia, Kotyrov, Myratgeldi, Qin, Xixi, Seyitliyev, Dovletgeldi, Phonthiptokun, Natchanun, Abdelsamei, Malek, Chai, Jingshan, Su, Rui, Herath, Uthpala, Swan, Anna K., Temnov, Vasily V., Blum, Volker, So, Franky, Gundogdu, Kenan
Issue&Volume: 2025-05-28
Abstract: Fast thermal dephasing limits macroscopic quantum phenomena to cryogenic conditions1,2,3,4 and hinders their use at ambient temperatures5,6. For electronic excitations in condensed media, dephasing is mediated by thermal lattice motion1,7,8. Therefore, taming the lattice influence is essential for creating collective electronic quantum states at high temperatures. Although there are occasional reports of high-Tc quantum effects across different platforms, it is unclear which lattice characteristics and electron–lattice interactions lead to macroscopically coherent electronic states in solids9. Here we studied intensity fluctuations in the macroscopic polarization during the emergence of superfluorescence in a lead halide perovskite10 and showed that spontaneously synchronized polaronic lattice oscillations accompany collective electronic dipole emission. We further developed an effective field model and theoretically confirmed that exciton–lattice interactions lead to a new electronically and structurally entangled coherent extended solitonic state beyond a critical polaron density. The analysis shows a phase transition with two processes happening in tandem: incoherent disordered polaronic lattice deformations establish an order, while macroscopic quantum coherence among excitons simultaneously emerges. Recombination of excitons in this state culminates in superfluorescence at high temperatures. Our study establishes fundamental connections between the transient superfluorescence process observed after the impulsive excitation of perovskites and general equilibrium phase transitions achieved by thermal cooling. By identifying various electron–lattice interactions in the perovskite structure and their respective role in creating collectively coherent electronic effects in solids, our work provides unprecedented insight into the design and development of new materials that exhibit high-temperature macroscopic quantum phenomena.
DOI: 10.1038/s41586-025-09030-x
Source: https://www.nature.com/articles/s41586-025-09030-x
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html