当前位置:科学网首页 > 小柯机器人 >详情
研究揭示在人类细胞中通过RNA连锁CRISPR筛选解码转录后调控网络
作者:小柯机器人 发布时间:2025/5/31 11:13:41

美国华盛顿州大学Arvind Rasi Subramaniam小组取得一项新突破。他们的最新研究揭示了在人类细胞中通过RNA连锁CRISPR筛选解码转录后调控网络。2025年5月29日,国际知名学术期刊《自然—方法学》发表了这一成果。

在这里,该课题组人员介绍了ReLiC,这是一种可扩展的高通量RNA链接CRISPR方法,用于测量不同RNA代谢过程对敲除2092个编码所有已知RNA相关蛋白的人类基因的反应。ReLiC依靠迭代策略将编码Cas9、单导RNA(sgRNAs)和条形码报告文库的基因整合到一个定义的基因组位点中。将ReLiC与多体分离相结合,揭示了核糖体占用的关键调节因子,揭示了翻译和蛋白质静止之间的联系。同种异构体特异性ReLiC捕获SF3B复合物亚基对内含子保留和外显子跳跃的差异调控。化学基因组学ReLiC筛选了信使RNA (mRNA)衰变上游的翻译调节因子,并确定了核糖体碰撞传感器GCN1在抗白血病药物同质杉碱治疗期间的作用。他们的工作表明,ReLiC是发现和剖析人类细胞转录后调控网络的一个强大框架。

据了解,RNA经历了一个复杂的代谢过程,由RNA相关蛋白的需求调节。

附:英文原文

Title: Decoding post-transcriptional regulatory networks by RNA-linked CRISPR screening in human cells

Author: Nugent, Patrick J., Park, Heungwon, Wladyka, Cynthia L., Yelland, James N., Sinha, Sayantani, Chen, Katharine Y., Bynum, Christine, Quarterman, Grace, Lee, Stanley C., Hsieh, Andrew C., Subramaniam, Arvind Rasi

Issue&Volume: 2025-05-29

Abstract: RNAs undergo a complex choreography of metabolic processes that are regulated by thousands of RNA-associated proteins. Here we introduce ReLiC, a scalable and high-throughput RNA-linked CRISPR approach to measure the responses of diverse RNA metabolic processes to knockout of 2,092 human genes encoding all known RNA-associated proteins. ReLiC relies on an iterative strategy to integrate genes encoding Cas9, single-guide RNAs (sgRNAs) and barcoded reporter libraries into a defined genomic locus. Combining ReLiC with polysome fractionation reveals key regulators of ribosome occupancy, uncovering links between translation and proteostasis. Isoform-specific ReLiC captures differential regulation of intron retention and exon skipping by SF3B complex subunits. Chemogenomic ReLiC screens decipher translational regulators upstream of messenger RNA (mRNA) decay and identify a role for the ribosome collision sensor GCN1 during treatment with the anti-leukemic drug homoharringtonine. Our work demonstrates ReLiC as a powerful framework for discovering and dissecting post-transcriptional regulatory networks in human cells.

DOI: 10.1038/s41592-025-02702-6

Source: https://www.nature.com/articles/s41592-025-02702-6

期刊信息

Nature Methods:《自然—方法学》,创刊于2004年。隶属于施普林格·自然出版集团,最新IF:47.99
官方网址:https://www.nature.com/nmeth/
投稿链接:https://mts-nmeth.nature.com/cgi-bin/main.plex