混合电活性材料、固态电解质和导电碳材料来制造复合电极是全固态电池中最常用但最不为人知的工艺,在很大程度上决定了界面稳定性和电荷输运。
研究组报道了在超高速混合过程中通过机械化学反应,在各种含卤素固态电解质和一系列高能硫族阴极的界面上普遍存在的卤化物偏析。通过多模态同步X射线探针和冷冻透射电镜对体相和界面的表征表明,原位分离的卤化锂界面层显著提高了有效的离子输运,抑制了体相硫族阴极的体积变化。各种全固态锂硫电池在商业水平的面积容量下利用率接近100%,并表现出非凡的循环稳定性。
附:英文原文
Title: Halide segregation to boost all-solid-state lithium-chalcogen batteries
Author: Jieun Lee, Shiyuan Zhou, Victoria C. Ferrari, Chen Zhao, Angela Sun, Sarah Nicholas, Yuzi Liu, Chengjun Sun, Dominik Wierzbicki, Dilworth Y. Parkinson, Jianming Bai, Wenqian Xu, Yonghua Du, Khalil Amine, Gui-Liang Xu
Issue&Volume: 2025-05-15
Abstract: Mixing electroactive materials, solid-state electrolytes, and conductive carbon to fabricate composite electrodes is the most practiced but least understood process in all-solid-state batteries, which strongly dictates interfacial stability and charge transport. We report on universal halide segregation at interfaces across various halogen-containing solid-state electrolytes and a family of high-energy chalcogen cathodes enabled by mechanochemical reaction during ultrahigh-speed mixing. Bulk and interface characterizations by multimodal synchrotron x-ray probes and cryo–transmission electron microscopy show that the in situ segregated lithium halide interfacial layers substantially boost effective ion transport and suppress the volume change of bulk chalcogen cathodes. Various all-solid-state lithium-chalcogen cells demonstrate utilization close to 100% and extraordinary cycling stability at commercial-level areal capacities.
DOI: adt1882
Source: https://www.science.org/doi/10.1126/science.adt1882
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:63.714
官方网址:https://www.sciencemag.org/
投稿链接:https://cts.sciencemag.org/scc/#/login