近日,中国科学院过程工程研究所杨军团队研究了金催化原子粗糙表面的构建及高效乙醇电氧化。相关论文于2025年4月29日发表在《科学通报》杂志上。
纳米结构的原子表面工程显著有助于增强给定化学反应的电催化作用。然而,探索一种在原子尺度上精细调节表面的简便方法仍然是一个巨大的挑战。研究组报告了通过一种新颖可控的金(Au)催化策略在Au基二元合金上构建原子粗糙表面(ARS)的过程,该策略涉及首先合成Au基双金属纳米合金,即AuPd和AuAg,随后由合金颗粒表面上的Au位点引发的另一种金属离子(Pt、Pd或Ag)的还原。
通过将ARS与低配位原子结合,并由邻近的Au原子诱导配体效应,所制备的ARS在碱性介质中对乙醇氧化反应(EOR)表现出良好的活性和耐久性。特别是,AuPd合金颗粒表面上的Pd-Pt-ARS(表示为AuPd-Pt)在比活性(14.9mA cm-2)和质量活性(28.5 A mg-1)方面表现出最高的电催化EOR性能,超过了其AuPd合金对应物、商业Pd/C催化剂和最近报道的大多数Pd基电催化剂。原位傅里叶变换红外光谱(FTIR)表明,Pd-Pt-ARS上的EOR过程强烈倾向于不完全氧化,这进一步得到了密度泛函理论(DFT)计算的证实。
附:英文原文
Title: Gold-catalyzed construction of atomically rough surfaces towards high-efficiency ethanol electrooxidation
Author: Shaonan Tian a, Dong Chen a, Jing Wang d, Jun Yang a b
Issue&Volume: 2025/04/29
Abstract: Atomic surface engineering for nanostructures significantly contributes to the enhancement of electrocatalysis for a given chemical reaction. However, exploring a facile method to elaborately regulate surfaces at atomic scale remains a grand challenge. Herein, we report the construction of atomically rough surfaces (ARSs) on Au-based binary alloys through a novel and controllable gold (Au)-catalyzed strategy, which involves the first synthesis of Au-based bimetallic nanoalloys, i.e., AuPd and AuAg, and subsequent reduction of another metal ions (Pt, Pd, or Ag) initiated by Au sites on the alloy particle surfaces. By combining ARSs with low-coordinated atoms with ligand effect induced by vicinal Au atoms, the as-prepared ARSs exhibit good activity and durability toward ethanol oxidation reaction (EOR) in an alkaline medium. In particular, the Pd-Pt ARSs on the AuPd alloy particle surface (denoted as AuPd-Pt) exhibit the highest electrocatalytic EOR performance in terms of both specific activity (14.9 mA cm–2) and mass activity (28.5 A mg–1), surpassing those of their AuPd alloy counterparts, commercial Pd/C catalyst, and most Pd-based electrocatalysts reported recently. In situ Fourier transform infrared (FTIR) spectroscopy reveals that the EOR process on the Pd-Pt ARSs strongly prefers incomplete oxidation, which is further authenticated by the density functional theory (DFT) calculations.
DOI: 10.1016/j.scib.2025.04.051
Source: https://www.sciencedirect.com/science/article/abs/pii/S2095927325004554
Science Bulletin:《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9
官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb