当前位置:科学网首页 > 小柯机器人 >详情
原子取代调制的主客体相互作用诱导的多金属氧酸盐基金属有机框架中的缺电子缺陷位
作者:小柯机器人 发布时间:2025/4/22 17:19:04


近日,大连理工大学刘艺伟团队研究了原子取代调制的主客体相互作用诱导的多金属氧酸盐基金属有机框架中的缺电子缺陷位。2025年4月21日,《科学通报》杂志发表了这一成果。

多金属氧酸盐基金属有机框架缺陷的战略性引入(POM@MOFs)能够在POM和缺陷位点之间实现协同催化作用,实现任何一种成分单独无法实现的催化功能。然而POM@MOFs合成系统使得缺陷的受控构造比传统MOF更具挑战性。在此,研究组开发了一种原子替代调制的主客体相互作用策略,用于受控合成电子缺陷位点POM@MOFs缺少可调的链接器内容。具体来说,在H3PMo12O40(PMo12)中,Mo原子逐渐被V原子取代,增强了表面氧物种的亲核性,从而增强了POM和UiO-67中Zr6氧簇之间的相互作用。

这种增强的相互作用通过POM与有机配体在自组装过程中的配位竞争诱导了不同程度的配体损失POM@UiO-67。同时,充当电子海绵的POM从UiO-67中提取电子,导致缺陷部位的电子密度低于传统的缺陷UiO-66。由于氢转移能垒显著降低,诱导缺陷位点在肉桂醛的转移氢化中表现出优异的催化性能。这项工作为设计基于主客体相互作用调节的具有协同效应的结晶多孔催化剂提供了新的视角。

附:英文原文

Title: Electron-deficient defect sites in polyoxometalate-based metal–organic frameworks induced by atom substitution-modulated host-guest interaction

Author: Yiwei Liu

Issue&Volume: 2025/04/21

Abstract: The strategic introduction of defects in polyoxometalate-based metal–organic frameworks (POM@MOFs) enables synergistic catalytic effects between POMs and defect sites, achieving catalytic functions unattainable by either component alone. However, the complexity of the POM@MOFs synthetic system makes the controlled construction of defects more challenging than in conventional MOFs. Herein, we develop an atomic substitution-modulated host-guest interaction strategy for controlled synthesis of electron-deficient defect sites in POM@MOFs with tunable missing-linker content. Specifically, the gradual substitution of Mo atoms with V atoms in H3PMo12O40 (PMo12) enhances the nucleophilicity of surface oxygen species, thereby strengthening the interaction between POMs and Zr6-oxo clusters in UiO-67. This enhanced interaction induces varying degrees of ligand loss through coordination competition of POMs with organic ligands during the self-assembly of POM@UiO-67. Meanwhile, POMs acting as electron sponges withdraw electrons from UiO-67, resulting in lower electron density at defect sites compared to traditional defective UiO-67. The induced defect sites exhibit superior catalytic performance in the transfer hydrogenation of cinnamaldehyde, due to a significantly reduced hydrogen transfer energy barrier. This work provides a new perspective for designing crystalline porous catalysts with synergistic effects based on the modulation of host-guest interaction.

DOI: 10.1016/j.scib.2025.04.040

Source: https://www.sciencedirect.com/science/article/abs/pii/S2095927325003986

期刊信息

Science Bulletin《科学通报》,创刊于1950年。隶属于SciEngine出版平台,最新IF:18.9

官方网址:https://www.sciengine.com/SB/home
投稿链接:https://mc03.manuscriptcentral.com/csb