美国马萨诸塞州总医院Yun, Seok-Hyun团队研究了激光粒子细胞的大规模组合光学条形码。2025年4月1日,《光:科学与应用》杂志发表了这一成果。
单个细胞的鉴定对于单细胞分析的进步至关重要。光学可读条形码提供了一种通过重复的非破坏性测量来区分和跟踪细胞的方法。传统的基于荧光团的方法受到它们可以产生的有限数量的独特条形码的限制。激光粒子(LP)在宽光谱范围内发射窄带峰值,已成为单细胞条形码的一种有前景的技术。
研究组演示了使用多个LP生成组合条形码,从而能够识别大量活细胞。他们介绍了一个理论框架,用于估计唯一条形码所需的LP数量和预期的识别错误率。此外,研究组提出了一种改进的LP标记方法,该方法在各种细胞类型中都非常有效,并评估了其生物相容性。该实验结果显示,数百万个细胞成功进行了条形码编码,与研究组的理论预测非常吻合。这项研究标志着LP技术在单细胞跟踪和分析的可扩展性方面迈出了重要一步。
附:英文原文
Title: Large-scale combinatorial optical barcoding of cells with laser particles
Author: Martino, Nicola, Yan, Hao, Abbott, Geoffrey, Fahlberg, Marissa, Forward, Sarah, Kim, Kwon-Hyeon, Wu, Yue, Zhu, Han, Kwok, Sheldon J. J., Yun, Seok-Hyun
Issue&Volume: 2025-04-01
Abstract: The identification of individual cells is crucial for advancements in single-cell analysis. Optically readable barcodes provide a means to distinguish and track cells through repeated, non-destructive measurements. Traditional fluorophore-based methods are limited by the finite number of unique barcodes they can produce. Laser particles (LPs), which emit narrowband peaks over a wide spectral range, have emerged as a promising technology for single-cell barcoding. Here, we demonstrate the use of multiple LPs to generate combinatorial barcodes, enabling the identification of a vast number of live cells. We introduce a theoretical framework for estimating the number of LPs required for unique barcodes and the expected identification error rate. Additionally, we present an improved LP-tagging method that is highly effective across a variety of cell types and evaluate its biocompatibility. Our experimental results show successful barcoding of several million cells, closely matching our theoretical predictions. This research marks a significant step forward in the scalability of LP technology for single-cell tracking and analysis.
DOI: 10.1038/s41377-025-01809-x
Source: https://www.nature.com/articles/s41377-025-01809-x
Light: Science & Applications:《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4
官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex