为了解决这个问题,该课题组人员建议通过引入多功能界面添加剂CsF来预先构建人工界面,以在ALIBs的阳极上建立优越的钝化。在循环之前,CsF首先与新鲜电解液中的LiTFSI进行位移反应,在阳极界面上原位形成LiF,避免了额外的Li+不可逆消耗。同时,该研究组发现溶解在电解质中的Cs+会破坏水的氢键网络,降低水在阳极界面上的活度,并与TFSI -强相互作用形成阳离子-阴离子配合物,促进阴离子靠近阳极界面。基于人工间期的阴离子还原可以最终实现人工间期的人工SEI。这种钝化稳定了水性电解质,显著抑制了HER的副反应,使ALIBs获得2000次以上的超长寿命。安培级(ah级)袋状电池的能量密度分别为57 Wh/kg和176 Wh/L,能量效率高达94%。
据介绍,固体电解质界面相(SEI)为水基锂离子电池(ALIBs)提供了有效的阳极钝化。ALIBs的传统钝化主要依赖于电解质中阴离子还原产生的含LiF的SEI。然而,这种SEI形成是一种竞争反应,受到寄生析氢反应(HER)的负面影响,导致Li+不可逆消耗高,裸缺陷不完美。
附:英文原文
Title: Interface Preconstruction Enables Robust Passivation of the Ah-Level Aqueous Li-ion Batteries
Author: Anxing Zhou, Jinkai Zhang, Ming Chen, Xinyan Li, Shuwei Li, Jintao Ma, Tianshi Lv, Xiangzhen Zhu, Guang Feng, Liumin Suo
Issue&Volume: March 31, 2025
Abstract: The solid electrolyte interphase (SEI) offers effective passivation on the anode for aqueous lithium-ion batteries (ALIBs). Conventional passivation in ALIBs mainly relies on the LiF-contained SEI originating from anion reduction in the electrolyte. However, such SEI formation is a competitive reaction negatively impacted by the parasitic hydrogen evolution reaction (HER), resulting in high Li+ irreversible consumption and imperfect bare flaws. To address this issue, we propose preconstructing an artificial interphase by introducing a multifunctional interface additive CsF to build superior passivation on the anode in ALIBs. CsF first undergoes a displacement reaction with LiTFSI from the fresh electrolyte to form the LiF in situ on the interface of the anode before the cycles, avoiding the extra Li+ irreversible consumption. Meanwhile, we uncover that the dissolving Cs+ in the electrolyte can destroy the hydrogen bond network of the water to lower water activity on the anode interface and strongly interact with TFSI– to form the cation–anion complex, facilitating the anion proximity to the anode interface. The anion reduction based on the artificial interphase can finally help achieve the robust SEI in ALIBs. Such passivation stabilizes the aqueous electrolyte, significantly suppressing the side reaction of the HER that allows ALIBs to obtain a superior long life above 2000 cycles. The ampere-hour-level (Ah-level) pouch cell achieves an energy density of 57 Wh/kg and 176 Wh/L with high energy efficiency (~94%).
DOI: 10.1021/jacs.4c15852
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c15852
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000