美国国家标准技术研究所Jizhao Zang团队研究了双向克尔谐振腔中孤子形成的激光功耗。相关论文发表在2025年3月5日出版的《自然—光子学》杂志上。
激光源为超快数据传输、计算加速、超高速信号传输以及化学检测、距离测量和模式识别等传感应用提供动力。这些应用的不断增长的规模推动了用于大规模并行处理的多波长激光器的创新。
研究组报道了一种纳米光子克尔谐振腔电路,该电路将输入激光的功率转换为接近单位效率的正常色散孤子频率梳。通过耦合正向和反向传播,实现了一个双向克尔谐振器,该谐振器支持通用相位匹配,但也通过双面发射打开了多余的损耗。因此,研究组诱导谐振器的前向外部耦合端口的反射,以促进反向传播,从而有效地形成单向孤子。
利用纳米光子学的相干后向散射提供控制,使克尔谐振器中的任意相位匹配和高效激光功耗处于同等地位。在过耦合谐振腔条件下,研究组测量了40mW输入泵浦激光器65%的转换效率;非线性电路消耗了97%的泵浦功率,产生了最大可能的梳状功率。该工作开辟了集成光子学中的高效孤子形成,探索了能量如何在非线性电路中流动,并使激光源能够用于高级传输、计算、量子传感和人工智能等应用。
附:英文原文
Title: Laser power consumption of soliton formation in a bidirectional Kerr resonator
Author: Zang, Jizhao, Yu, Su-Peng, Liu, Haixin, Jin, Yan, Briles, Travis C., Carlson, David R., Papp, Scott B.
Issue&Volume: 2025-03-05
Abstract: Laser sources power ultrafast data transmission, computing acceleration, access to ultra-high-speed signalling, and sensing applications such as chemical detection, distance measurements and pattern recognition. The ever-growing scale of these applications drives innovation in multiwavelength lasers for massively parallel processing. We report a nanophotonic Kerr-resonator circuit that converts the power of an input laser into a normal-dispersion soliton frequency comb at approaching unit efficiency. By coupling forward and backward propagation, we realize a bidirectional Kerr resonator that supports universal phase matching but also opens excess loss by double-sided emission. We therefore induce reflection of the resonator’s forward, external coupling port to favour backward propagation, resulting in efficient, unidirectional soliton formation. Coherent backscattering with nanophotonics provides the control to put arbitrary phase-matching and efficient laser power consumption on equal footing in Kerr resonators. In the overcoupled-resonator regime, we measure 65% conversion efficiency for a 40mW input pump laser; the nonlinear circuit consumes 97% of the pump, generating the maximum possible comb power. Our work opens up high-efficiency soliton formation in integrated photonics, exploring how energy flows in nonlinear circuits and enabling laser sources for applications such as advanced transmission, computing, quantum sensing and artificial intelligence.
DOI: 10.1038/s41566-025-01624-1
Source: https://www.nature.com/articles/s41566-025-01624-1