当前位置:科学网首页 > 小柯机器人 >详情
基于量子统计的三光子全光生物电压传感
作者:小柯机器人 发布时间:2025/3/5 9:23:59

美国加州大学圣地亚哥分校Ertugrul Cubukcu团队研究了基于量子统计的三光子全光生物电压传感。这一研究成果发表在2025年3月3日出版的《自然—光子学》杂志上。

单层半导体中的量子限制导致光学性质与电子错综复杂地联系在一起,电子可以被外部电场操纵。这些光电特征为研究生物电活动提供了尚未开发的潜力。除了相对较高的量子产率外,皮秒级发射寿命使这些材料特别有希望以高时空分辨率监测生物电压。

课题组研究了埃米厚半导体中的激子到三极管的转换,以实验证明在超高时间分辨率的心肌细胞培养中,通过光致发光的变化,无标记、双极性、全光检测电活动。他们设计了一个物理模型来证明这种转换过程本质上由生物活动引起的背景电子的量子统计决定。结果表明,单层MoS2由于其源自化学气相沉积过程中引入的本征硫空位的大量三极管密度,能够实现完全无偏压的无四极操作。

该工作为使用埃米厚半导体材料进行无标签全光电压传感开辟了一条未经探索的机会之路,这些材料在生物领域的应用一直难以捉摸。这种生物学和量子科学交叉的思路可能会导致发现用于检测生物电活动的非无处不在的量子材料。

附:英文原文

Title: Trionic all-optical biological voltage sensing via quantum statistics

Author: Ren, Yundong, De-Eknamkul, Chawina, Sun, Fengyi, Ramezani, Mehrdad, Gonzalez, Gisselle, Huang, Wenzhuo, Schwab, Jake H., Wilson, Madison N., Engler, Adam J., Kuzum, Duygu, Cubukcu, Ertugrul

Issue&Volume: 2025-03-03

Abstract: Quantum confinement in monolayer semiconductors results in optical properties intricately linked to electrons, which can be manipulated by external electric fields. These optoelectronic features offer untapped potential for studying biological electrical activity. In addition to their relatively high quantum yields, picosecond level emission lifetimes make these materials particularly promising for monitoring biological voltages with high spatiotemporal resolution. Here we investigate exciton-to-trion conversion in ngstrm-thick semiconductors to experimentally demonstrate label-free, dual-polarity, all-optical detection of electrical activity, via changes in photoluminescence, in cardiomyocyte cultures with ultrahigh temporal resolution. We devise a physical model to demonstrate that this conversion process is inherently governed by the quantum statistics of the background electrons induced by biological activity. We show that the monolayer MoS2 enables completely bias-free tetherless operation due to its substantial trion density originating from intrinsic sulfur vacancies introduced during chemical vapour deposition. Our work opens up an unexplored avenue of opportunities for label-free all-optical voltage sensing using ngstrm-thick semiconductor materials whose applications have been elusive in the biological domain. This line of thinking at the intersection of biology and quantum science could lead to the discovery of non-ubiquitous quantum materials for detection of biological electrical activity.

DOI: 10.1038/s41566-025-01637-w

Source: https://www.nature.com/articles/s41566-025-01637-w

期刊信息
Nature Photonics:《自然—光子学》,创刊于2007年。隶属于施普林格·自然出版集团,最新IF:39.728