分子密集的水电极-电解质界面的原位检测,这一成果由中国科学技术大学宋礼
课题组研究人员使用弱能环境压力X射线光电子能谱(AP-XPS)来弥补超高真空和近大气压之间的差距,从而深入研究了锌金属阳极中分子拥挤的水界面演化。结果表明,添加剂分子的持续存在有效地抑制了活性Zn与H2O的直接接触,同时也促进了Zn的均匀沉积。原位光学显微镜观察和同步辐射x射线衍射进一步证实了均匀致密的Zn沉积,归因于(002)晶面演化引起的侧向生长。作为其有效性的证明,含有Zn//Zn、Zn//Cu和全电池添加剂的电池表现出显著提高的稳定性和可逆性。这一发现为在分子水平上探索界面化学开辟了新的途径,为实际应用中水离子电池高稳定金属阳极的设计提供了见解。
据了解,电极-电解质界面对电化学电极的稳定性和性能起着至关重要的作用。虽然x射线光电子能谱已经成为界面化学的一种强大的分析技术,但超高真空的必要性仍然是直接检测动态界面演变的一个重大障碍,特别是在水环境中。
附:英文原文
Title: In situ Detection of the Molecule-Crowded Aqueous Electrode–Electrolyte Interface
Author: Shiqiang Wei, Hongwei Shou, Zheng-Hang Qi, Shuangming Chen, Yong Han, Shucheng Shi, Yixiu Wang, Pengjun Zhang, Jialin Shi, Zijun Zhang, Yuyang Cao, Changda Wang, Jiewu Cui, Xiaojun Wu, Zhi Liu, Li Song
Issue&Volume: March 19, 2025
Abstract: Electrode–electrolyte interface plays a crucial role in determining the stability and behavior of electrochemical electrodes. Although X-ray photoelectron spectroscopy has been established as a powerful analytical technique for interface chemistry, the necessity for ultrahigh vacuum remains a significant obstacle to directly detecting dynamic interfacial evolution, particularly in aqueous environments. Here, we employ tender-energy ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to bridge the gap between ultrahigh vacuum and near-atmospheric pressure, enabling an in-depth investigation of the molecule-crowded aqueous interface evolution in a Zn metal anode. The results demonstrate that the persistent presence of additive molecules effectively inhibits direct contact between reactive Zn and H2O, while also facilitating uniform Zn deposition. In situ optical microscopy observations and synchrotron radiation X-ray diffraction further verified the uniform and dense Zn deposition, attributed to lateral growth induced by the (002) crystal facet evolution. As proof of its effectiveness, batteries incorporating the Zn//Zn, Zn//Cu, and full cell with the additive demonstrate significantly improved stability and reversibility. This finding opens up new avenues for exploration of interfacial chemistry at the molecule level, offering insights into the design of highly stable metal anodes of aqueous ion batteries for practical applications.
DOI: 10.1021/jacs.4c14053
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c14053
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000