英国埃克塞特大学Kirsty Y. Wan团队研究了底栖硅藻滑行运动的功能形态学。这一研究成果于2025年3月18日发表在《美国科学院院刊》上。
硅藻是一种非常成功的光合藻类,占全球初级生产力的四分之一。许多物种是能动的,尽管没有附属物和完全刚性的细胞体。细胞移动以寻找营养,定位交配伙伴,并进行垂直迁移。为了探索硅藻运动的自然多样性,研究组对五种常见的生物膜形成物种进行了比较研究。将形态学测量与高分辨率细胞追踪相结合,研究组确定了滑动运动与中缝形态的关系——中缝是细胞壁上负责运动产生的一个特殊缝隙。
详细分析表明,细胞表现出丰富但依赖于物种的表型,在四种刻板的运动状态之间随机切换。研究组对这种行为进行建模,并使用随机模拟来预测微尺度导航模式的异质性如何导致长期扩散率和分散性的差异。在一个具有代表性的物种中,研究组将这些发现扩展到量化硅藻在复杂的自然3D环境中的滑动,这表明细胞可能会利用这些不同的运动特征来实现自然界中的生态位分离。
附:英文原文
Title: Functional morphology of gliding motility in benthic diatoms
Author: Bondoc-Naumovitz, Karen Grace, Crosato, Emanuele, Wan, Kirsty Y.
Issue&Volume: 2025-3-18
Abstract: Diatoms, a highly successful group of photosynthetic algae, contribute to a quarter of global primary production. Many species are motile, despite having no appendages and a completely rigid cell body. Cells move to seek out nutrients, locate mating partners, and undergo vertical migration. To explore the natural diversity of diatom motility, we perform a comparative study across five common biofilm-forming species. Combining morphological measurements with high-resolution cell tracking, we establish how gliding movements relate to the morphology of the raphe—a specialized slit in the cell wall responsible for motility generation. Our detailed analyses reveal that cells exhibit a rich but species-dependent phenotype, switching stochastically between four stereotyped motility states. We model this behavior and use stochastic simulations to predict how heterogeneity in microscale navigation patterns leads to differences in long-time diffusivity and dispersal. In a representative species, we extend these findings to quantify diatom gliding in complex, naturalistic 3D environments, suggesting that cells may exploit these distinct motility signatures to achieve niche segregation in nature.
DOI: 10.1073/pnas.2426910122
Source: https://www.pnas.org/doi/abs/10.1073/pnas.2426910122