东北师范大学X. Z. Hao团队研究了超越单激发假设的拓扑量子态转移。相关论文于2025年3月17日发表在《物理评论A》杂志上。
众所周知,在单激发子空间内,Su-Schrieffer-Heeger(SSH)模型表现出将激发从晶格一端转移到另一端的显著能力。在这项工作中,通过放宽单激发的限制,研究组发现由SSH模型的拓扑边模形成的拓扑通道也可以实现任意高斯态的转移。
具体来说,他们研究了一维(1D)光机晶格内的状态转移过程,该过程可以映射到具有可调耦合强度的SSH模型。通过最初在压缩真空状态下制备第一光学模式,并在整个周期内绝热改变系统参数,可以将压缩真空状态转换为第三机械模式。此外,课题组将该研究扩展到任意高斯态的转移。由于高斯态可以用系统的协方差矩阵来描述,他们将协方差矩阵的演化方程重新表述为薛定谔型方程。这种重新表述为人们提供了一种直观的方式来展示任意高斯状态是如何转移的。
该工作拓宽了拓扑系统在量子态转移中的应用,证明不仅可以有效地转移单激发态,还可以转移包括多激发和量子相干性的任意高斯态,这对量子信息处理具有潜在的影响。
附:英文原文
Title: Topological quantum state transfer beyond the single-excitation assumption
Author: X. Z. Hao, X. Y. Zhang, X. X. Yi
Issue&Volume: 2025/03/17
Abstract: As is well known, within the single-excitation subspace, the Su-Schrieffer-Heeger (SSH) model exhibits a remarkable ability to transfer an excitation from one end of the lattice to the other. In this work, by relaxing the restriction of the single excitation, we find that a topological channel formed by the topological edge modes of the SSH model can also realize the transfer of arbitrary Gaussian states. Specifically, we investigate the state transfer process within a one-dimensional (1D) optomechanical lattice, which can be mapped to the SSH model with tunable coupling strength. By initially preparing the first optical mode in a squeezed vacuum state and adiabatically varying the system parameters over a full cycle, the squeezed vacuum state can be transferred to the Nth mechanical mode. Furthermore, we extend our investigation to the transfer of arbitrary Gaussian states. Since Gaussian states can be described by the covariance matrix of the system, we reformulate the evolution equation of the covariance matrix in a Schrdinger-type equation. This reformulation provides us with an intuitive way to show how an arbitrary Gaussian state is transferred. Our work broadens the application of topological systems for quantum state transfer, demonstrating that not only single-excitation states but also arbitrary Gaussian states, which include multiple excitations and quantum coherence, can be efficiently transferred, with potential implications for quantum information processing.
DOI: 10.1103/PhysRevA.111.032417
Source: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.111.032417
Physical Review A:《物理评论A》,创刊于1970年。隶属于美国物理学会,最新IF:2.97
官方网址:https://journals.aps.org/pra/
投稿链接:https://authors.aps.org/Submissions/login/new